Open Science Research Excellence

A Suleng

Publications

2

Publications

2
2159
Krylov Model Order Reduction of a Thermal Subsea Model
Abstract:

A subsea hydrocarbon production system can undergo planned and unplanned shutdowns during the life of the field. The thermal FEA is used to simulate the cool down to verify the insulation design of the subsea equipment, but it is also used to derive an acceptable insulation design for the cold spots. The driving factors of subsea analyses require fast responding and accurate models of the equipment cool down. This paper presents cool down analysis carried out by a Krylov subspace reduction method, and compares this approach to the commonly used FEA solvers. The model considered represents a typical component of a subsea production system, a closed valve on a dead leg. The results from the Krylov reduction method exhibits the least error and requires the shortest computational time to reach the solution. These findings make the Krylov model order reduction method very suitable for the above mentioned subsea applications.

Keywords:
Model order reduction, Krylov subspace, subsea production system, finite element.
1
13547
Tuning of Thermal FEA Using Krylov Parametric MOR for Subsea Application
Abstract:
A dead leg is a typical subsea production system component. CFD is required to model heat transfer within the dead leg. Unfortunately its solution is time demanding and thus not suitable for fast prediction or repeated simulations. Therefore there is a need to create a thermal FEA model, mimicking the heat flows and temperatures seen in CFD cool down simulations. This paper describes the conventional way of tuning and a new automated way using parametric model order reduction (PMOR) together with an optimization algorithm. The tuned FE analyses replicate the steady state CFD parameters within a maximum error in heat flow of 6 % and 3 % using manual and PMOR method respectively. During cool down, the relative error of the tuned FEA models with respect to temperature is below 5% comparing to the CFD. In addition, the PMOR method obtained the correct FEA setup five times faster than the manually tuned FEA.
Keywords:
CFD, convective heat, FEA, model tuning, subseaproduction