Open Science Research Excellence

Chen Wu

Publications

9

Publications

9
2105
Benchmarking: Performance on ALPS and Formosa Clusters
Abstract:
This paper presents the benchmarking results and performance evaluation of differentclustersbuilt atthe National Center for High-Performance Computingin Taiwan. Performance of processor, memory subsystem andinterconnect is a critical factor in the overall performance of high performance computing platforms. The evaluation compares different system architecture and software platforms. Most supercomputer used HPL to benchmark their system performance, in accordance with the requirement of the TOP500 List. In this paper we consider system memory access factors that affect benchmark performance, such as processor and memory performance.We hope these works will provide useful information for future development and construct cluster system.
Keywords:
Performance Evaluation, Benchmarking and High-Performance Computing
8
10939
Join and Meet Block Based Default Definite Decision Rule Mining from IDT and an Incremental Algorithm
Abstract:
Using maximal consistent blocks of tolerance relation on the universe in incomplete decision table, the concepts of join block and meet block are introduced and studied. Including tolerance class, other blocks such as tolerant kernel and compatible kernel of an object are also discussed at the same time. Upper and lower approximations based on those blocks are also defined. Default definite decision rules acquired from incomplete decision table are proposed in the paper. An incremental algorithm to update default definite decision rules is suggested for effective mining tasks from incomplete decision table into which data is appended. Through an example, we demonstrate how default definite decision rules based on maximal consistent blocks, join blocks and meet blocks are acquired and how optimization is done in support of discernibility matrix and discernibility function in the incomplete decision table.
Keywords:
rough set, incomplete decision table, maximalconsistent block, default definite decision rule, join and meet block.
7
12504
Applications of Rough Set Decompositions in Information Retrieval
Abstract:
This paper proposes rough set models with three different level knowledge granules in incomplete information system under tolerance relation by similarity between objects according to their attribute values. Through introducing dominance relation on the discourse to decompose similarity classes into three subclasses: little better subclass, little worse subclass and vague subclass, it dismantles lower and upper approximations into three components. By using these components, retrieving information to find naturally hierarchical expansions to queries and constructing answers to elaborative queries can be effective. It illustrates the approach in applying rough set models in the design of information retrieval system to access different granular expanded documents. The proposed method enhances rough set model application in the flexibility of expansions and elaborative queries in information retrieval.
Keywords:
Incomplete information system, Rough set model,tolerance relation, dominance relation, approximation, decomposition,elaborative query.
6
9999154
A Study of Semantic Analysis of LED Illustrated Traffic Directional Arrow in Different Style
Abstract:

In the past, the most comprehensively adopted light source was incandescent light bulbs, but with the appearance of LED light sources, traditional light sources have been gradually replaced by LEDs because of its numerous superior characteristics. However, many of the standards do not apply to LEDs as the two light sources are characterized differently. This also intensifies the significance of studies on LEDs. As a Kansei design study investigating the visual glare produced by traffic arrows implemented with LEDs, this study conducted a semantic analysis on the styles of traffic arrows used in domestic and international occasions. The results will be able to reduce drivers’ misrecognition that results in the unsuccessful arrival at the destination, or in traffic accidents. This study started with a literature review and surveyed the status quo before conducting experiments that were divided in two parts. The first part involved a screening experiment of arrow samples, where cluster analysis was conducted to choose five representative samples of LED displays. The second part was a semantic experiment on the display of arrows using LEDs, where the five representative samples and the selected ten adjectives were incorporated. Analyzing the results with Quantification Theory Type I, it was found that among the composition of arrows, fletching was the most significant factor that influenced the adjectives. In contrast, a “no fletching” design was more abstract and vague. It lacked the ability to convey the intended message and might bear psychological negative connotation including “dangerous,” “forbidden,” and “unreliable.” The arrow design consisting of “> shaped fletching” was found to be more concrete and definite, showing positive connotation including “safe,” “cautious,” and “reliable.” When a stimulus was placed at a farther distance, the glare could be significantly reduced; moreover, the visual evaluation scores would be higher. On the contrary, if the fletching and the shaft had a similar proportion, looking at the stimuli caused higher evaluation at a closer distance. The above results will be able to be applied to the design of traffic arrows by conveying information definitely and rapidly. In addition, drivers’ safety could be enhanced by understanding the cause of glare and improving visual recognizability.

Keywords:
LED, arrow, Kansei research, preferred imagery.
5
10003943
A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback
Abstract:
With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.
Keywords:
Input performance, mobile device, slim keyboard, tactile feedback.
4
10004968
An Improved Variable Tolerance RSM with a Proportion Threshold
Abstract:
In rough set models, tolerance relation, similarity relation and limited tolerance relation solve different situation problems for incomplete information systems in which there exists a phenomenon of missing value. If two objects have the same few known attributes and more unknown attributes, they cannot distinguish them well. In order to solve this problem, we presented two improved limited and variable precision rough set models. One is symmetric, the other one is non-symmetric. They all use more stringent condition to separate two small probability equivalent objects into different classes. The two models are needed to engage further study in detail. In the present paper, we newly form object classes with a different respect comparing to the first suggested model. We overcome disadvantages of non-symmetry regarding to the second suggested model. We discuss relationships between or among several models and also make rule generation. The obtained results by applying the second model are more accurate and reasonable.
Keywords:
Incomplete information system, rough set, symmetry, variable precision.
3
10008266
An Improved Limited Tolerance Rough Set Model
Abstract:

Some extended rough set models in incomplete information system cannot distinguish the two objects that have few known attributes and more unknown attributes; some cannot make a flexible and accurate discrimination. In order to solve this problem, this paper suggests an improved limited tolerance rough set model using two thresholds to control what two objects have a relationship between them in limited tolerance relation and to classify objects. Our practical study case shows the model can get fine and reasonable decision results.

Keywords:
Decision rule, incomplete information system, limited tolerance relation, rough set model.
2
10008418
Invariant Characters of Tolerance Class and Reduction under Homomorphism in IIS
Abstract:

Some invariant properties of incomplete information systems homomorphism are studied in this paper. Demand conditions of tolerance class, attribute reduction, indispensable attribute and dispensable attribute being invariant under homomorphism in incomplete information system are revealed and discussed. The existing condition of endohomomorphism on an incomplete information system is also explored. It establishes some theoretical foundations for further investigations on incomplete information systems in rough set theory, like in information systems.

Keywords:
Attribute reduction, homomorphism, incomplete information system, rough set, tolerance relation.
1
10008467
Studies on Properties of Knowledge Dependency and Reduction Algorithm in Tolerance Rough Set Model
Abstract:
Relation between tolerance class and indispensable attribute and knowledge dependency in rough set model with tolerance relation is explored. After giving definitions and concepts of knowledge dependency and knowledge dependency degree for incomplete information system in tolerance rough set model by distinguishing decision attribute containing missing attribute value or not, the result of maintaining reflectivity, transitivity, augmentation, decomposition law and merge law for complete knowledge dependency is proved. Knowledge dependency degrees (not complete knowledge dependency degrees) only satisfy some laws after transitivity, augmentation and decomposition operations. An algorithm to solve attribute reduction in an incomplete decision table is designed. The correctness is checked by an example.
Keywords:
Incomplete information system, rough set, tolerance relation, knowledge dependence, attribute reduction.