Open Science Research Excellence

Hans H Diel

Publications

3

Publications

3
7648
Problems and Possible Solutions with the Development of a Computer Model of Quantum Theory
Authors:
Abstract:
A computer model of Quantum Theory (QT) has been developed by the author. Major goal of the computer model was support and demonstration of an as large as possible scope of QT. This includes simulations for the major QT (Gedanken-) experiments such as, for example, the famous double-slit experiment. Besides the anticipated difficulties with (1) transforming exacting mathematics into a computer program, two further types of problems showed up, namely (2) areas where QT provides a complete mathematical formalism, but when it comes to concrete applications the equations are not solvable at all, or only with extremely high effort; (3) QT rules which are formulated in natural language and which do not seem to be translatable to precise mathematical expressions, nor to a computer program. The paper lists problems in all three categories and describes also the possible solutions or circumventions developed for the computer model.
Keywords:
Computability, Foundation of Quantum Mechanics, Measurement Process, Modeling.
2
16131
A Computer Model of Quantum Field Theory
Abstract:

This paper describes a computer model of Quantum Field Theory (QFT), referred to in this paper as QTModel. After specifying the initial configuration for a QFT process (e.g. scattering) the model generates the possible applicable processes in terms of Feynman diagrams, the equations for the scattering matrix, and evaluates probability amplitudes for the scattering matrix and cross sections. The computations of probability amplitudes are performed numerically. The equations generated by QTModel are provided for demonstration purposes only. They are not directly used as the base for the computations of probability amplitudes. The computer model supports two modes for the computation of the probability amplitudes: (1) computation according to standard QFT, and (2) computation according to a proposed functional interpretation of quantum theory.

Keywords:
Computational Modeling, Simulation of Quantum Theory, Quantum Field Theory, Quantum Electrodynamics
1
15006
A Functional Interpretation of Quantum Theory
Authors:
Abstract:
In this paper a functional interpretation of quantum theory (QT) with emphasis on quantum field theory (QFT) is proposed. Besides the usual statements on relations between a functions initial state and final state, a functional interpretation also contains a description of the dynamic evolution of the function. That is, it describes how things function. The proposed functional interpretation of QT/QFT has been developed in the context of the author-s work towards a computer model of QT with the goal of supporting the largest possible scope of QT concepts. In the course of this work, the author encountered a number of problems inherent in the translation of quantum physics into a computer program. He came to the conclusion that the goal of supporting the major QT concepts can only be satisfied, if the present model of QT is supplemented by a "functional interpretation" of QT/QFT. The paper describes a proposal for that
Keywords:
Computability, Foundation of Quantum Mechanics, Measurement Problem, Models of Physics.