3

3

7648

Problems and Possible Solutions with the Development of a Computer Model of Quantum Theory

A computer model of Quantum Theory (QT) has been
developed by the author. Major goal of the computer model was
support and demonstration of an as large as possible scope of QT.
This includes simulations for the major QT (Gedanken-) experiments
such as, for example, the famous double-slit experiment.
Besides the anticipated difficulties with (1) transforming exacting
mathematics into a computer program, two further types of problems
showed up, namely (2) areas where QT provides a complete mathematical
formalism, but when it comes to concrete applications the
equations are not solvable at all, or only with extremely high effort;
(3) QT rules which are formulated in natural language and which do
not seem to be translatable to precise mathematical expressions, nor
to a computer program.
The paper lists problems in all three categories and describes also
the possible solutions or circumventions developed for the computer
model.

Computability, Foundation of Quantum Mechanics,
Measurement Process, Modeling.

2

16131

A Computer Model of Quantum Field Theory

This paper describes a computer model of Quantum Field Theory (QFT), referred to in this paper as QTModel. After specifying the initial configuration for a QFT process (e.g. scattering) the model generates the possible applicable processes in terms of Feynman diagrams, the equations for the scattering matrix, and evaluates probability amplitudes for the scattering matrix and cross sections. The computations of probability amplitudes are performed numerically. The equations generated by QTModel are provided for demonstration purposes only. They are not directly used as the base for the computations of probability amplitudes. The computer model supports two modes for the computation of the probability amplitudes: (1) computation according to standard QFT, and (2) computation according to a proposed functional interpretation of quantum theory.

Computational Modeling, Simulation of Quantum Theory, Quantum Field Theory, Quantum Electrodynamics

1

15006

A Functional Interpretation of Quantum Theory

In this paper a functional interpretation of quantum
theory (QT) with emphasis on quantum field theory (QFT) is proposed.
Besides the usual statements on relations between a functions
initial state and final state, a functional interpretation also contains
a description of the dynamic evolution of the function. That is, it
describes how things function. The proposed functional interpretation
of QT/QFT has been developed in the context of the author-s work
towards a computer model of QT with the goal of supporting
the largest possible scope of QT concepts. In the course of this
work, the author encountered a number of problems inherent in the
translation of quantum physics into a computer program. He came
to the conclusion that the goal of supporting the major QT concepts
can only be satisfied, if the present model of QT is supplemented
by a "functional interpretation" of QT/QFT. The paper describes a
proposal for that

Computability, Foundation of Quantum Mechanics,
Measurement Problem, Models of Physics.