Open Science Research Excellence

K Varesi

Publications

2

Publications

2
1233
A Novel Methodology Proposed for Optimizing the Degree of Hybridization in Parallel HEVs using Genetic Algorithm
Abstract:
In this paper, a new Genetic Algorithm (GA) based methodology is proposed to optimize the Degree of Hybridization (DOH) in a passenger parallel hybrid car. At first step, target parameters for the vehicle are decided and then using ADvanced VehIcle SimulatOR (ADVISOR) software, the variation pattern of these target parameters, across the different DOHs, is extracted. At the next step, a suitable cost function is defined and is optimized using GA. In this paper, also a new technique has been proposed for deciding the number of battery modules for each DOH, which leads to a great improvement in the vehicle performance. The proposed methodology is so simple, fast and at the same time, so efficient.
Keywords:
Degree of Hybridization (DOH), Electric Motor,Emissions, Fuel Economy, Genetic Algorithm (GA), Hybrid ElectricVehicle (HEV), Vehicle Performance
1
6464
Optimal Allocation of DG Units for Power Loss Reduction and Voltage Profile Improvement of Distribution Networks using PSO Algorithm
Authors:
Abstract:
This paper proposes a Particle Swarm Optimization (PSO) based technique for the optimal allocation of Distributed Generation (DG) units in the power systems. In this paper our aim is to decide optimal number, type, size and location of DG units for voltage profile improvement and power loss reduction in distribution network. Two types of DGs are considered and the distribution load flow is used to calculate exact loss. Load flow algorithm is combined appropriately with PSO till access to acceptable results of this operation. The suggested method is programmed under MATLAB software. Test results indicate that PSO method can obtain better results than the simple heuristic search method on the 30-bus and 33- bus radial distribution systems. It can obtain maximum loss reduction for each of two types of optimally placed multi-DGs. Moreover, voltage profile improvement is achieved.
Keywords:
Distributed Generation (DG), Optimal Allocation, Particle Swarm Optimization (PSO), Power Loss Minimization, Voltage Profile Improvement.