Open Science Research Excellence

Kazuo Nakazato

Publications

2

Publications

2
2700
Variable Input Range Continuous-time Switched Current Delta-sigma Analog Digital Converter for RFID CMOS Biosensor Applications
Abstract:

Continuous-time delta-sigma analog digital converter (ADC) for radio frequency identification (RFID) complementary metal oxide semiconductor (CMOS) biosensor has been reported. This delta-sigma ADC is suitable for digital conversion of biosensor signal because of small process variation, and variable input range. As the input range of continuous-time switched current delta-sigma ADC (Dynamic range : 50 dB) can be limited by using current reference, amplification of biosensor signal is unnecessary. The input range is switched to wide input range mode or narrow input range mode by command of current reference. When the narrow input range mode, the input range becomes ± 0.8 V. The measured power consumption is 5 mW and chip area is 0.31 mm^2 using 1.2 um standard CMOS process. Additionally, automatic input range detecting system is proposed because of RFID biosensor applications.

Keywords:
continuous time, delta sigma, A/D converter, RFID, biosensor, CMOS
1
9402
Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy
Abstract:

We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.

Keywords:
Biosensor, electrical double-layer, impedance spectroscopy, label free DNA.