Open Science Research Excellence

Mahmoud Dehghan Nayeri

Publications

3

Publications

3
11837
Technological Deep Assessment of Automotive Parts Manufacturers Case of Iranian Manufacturers
Abstract:
In order to develop any strategy, it is essential to first identify opportunities, threats, weak and strong points. Assessment of technology level provides the possibility of concentrating on weak and strong points. The results of technology assessment have a direct effect on decision making process in the field of technology transfer or expansion of internal research capabilities so it has a critical role in technology management. This paper presents a conceptual model to analyze the technology capability of a company as a whole and in four main aspects of technology. This model was tested on 10 automotive parts manufacturers in IRAN. Using this model, capability level of manufacturers was investigated in four fields of managing aspects, hard aspects, human aspects, and information and knowledge aspects. Results show that these firms concentrate on hard aspect of technology while others aspects are poor and need to be supported more. So this industry should develop other aspects of technology as well as hard aspect to have effective and efficient use of its technology. These paper findings are useful for the technology planning and management in automotive part manufactures in IRAN and other Industries which are technology followers and transport their needed technologies.
Keywords:
Technology, Technological evaluation, TechnologyMaturity
2
15069
Robust Regression and its Application in Financial Data Analysis
Abstract:

This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.

Keywords:
Financial data analysis, Influential data, Outliers, Robust regression.
1
15331
Value-Relevance of Accounting Information:Evidence from Iranian Emerging Stock Exchange
Abstract:
This study aims to investigate empirically the valuerelevance of accounting information to domestic investors in Tehran stock exchange from 1999 to 2006. During the present research impacts of two factors, including positive vs. negative earnings and the firm size are considered as well. The authors used earnings per share and annual change of earnings per share as the income statement indices, and book value of equity per share as the balance sheet index. Return and Price models through regression analysis are deployed in order to test the research hypothesis. Results depicted that accounting information is value-relevance to domestic investors in Tehran Stock Exchange according to both studied models. However, income statement information has more value-relevance than the balance sheet information. Furthermore, positive vs. negative earnings and firm size seems to have significant impact on valuerelevance of accounting information.
Keywords:
Value-Relevance of Accounting Information, Iranianstock exchange, Return Model, Price Model