Open Science Research Excellence

Mounir Ait Kerroum

Publications

1

Publications

1
10231
Input Textural Feature Selection By Mutual Information For Multispectral Image Classification
Abstract:
Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).
Keywords:
Feature Selection, Texture, Mutual Information,Wavelet Transform, SVM classification, SPOT Imagery.