5
10000
Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft
Abstract: Hypersonic flows around spatial vehicles during their
reentry phase in planetary atmospheres are characterized by intense
aerothermal phenomena. The aim of this work is to analyze high
temperature flows around an axisymmetric blunt body taking into
account chemical and vibrational non-equilibrium for air mixture
species. For this purpose, a finite volume methodology is employed
to determine the supersonic flow parameters around the axisymmetric
blunt body, especially at the stagnation point and along the wall of
spacecraft for several altitudes. This allows the capture shock wave
before a blunt body placed in supersonic free stream. The numerical
technique uses the Flux Vector Splitting method of Van Leer. Here,
adequate time stepping parameter, along with CFL coefficient and
mesh size level are selected to ensure numerical convergence, sought
with an order of 10-8
Keywords: Chemical kinetic, dissociation, finite volumes,frozen, hypersonic flow, non-equilibrium, Reactive flow, supersonicflow , vibration.
4
11479
Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle
Abstract: The aim of this work is to analyze a viscous flow in
the axisymmetric nozzle taken into account the mesh size both in the
free stream and into the boundary layer. The resolution of the Navier-
Stokes equations is realized by using the finite volume method to
determine the supersonic flow parameters at the exit of convergingdiverging
nozzle. The numerical technique uses the Flux Vector
Splitting method of Van Leer. Here, adequate time stepping
parameter, along with CFL coefficient and mesh size level is selected
to ensure numerical convergence. The effect of the boundary layer
thickness is significant at the exit of the nozzle. The best solution is
obtained with using a very fine grid, especially near the wall, where
we have a strong variation of velocity, temperature and shear stress.
This study enabled us to confirm that the determination of boundary
layer thickness can be obtained only if the size of the mesh is lower
than a certain value limits given by our calculations.
Keywords: Supersonic flow, viscous flow, finite volume, nozzle
2
9998878
Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body
Abstract: The aim of this work is to analyze a viscous flow
around the axisymmetric blunt body taken into account the mesh size
both in the free stream and into the boundary layer. The resolution of
the Navier-Stokes equations is realized by using the finite volume
method to determine the flow parameters and detached shock
position. The numerical technique uses the Flux Vector Splitting
method of Van Leer. Here, adequate time stepping parameter, CFL
coefficient and mesh size level are selected to ensure numerical
convergence. The effect of the mesh size is significant on the shear
stress and velocity profile. The best solution is obtained with using a
very fine grid. This study enabled us to confirm that the
determination of boundary layer thickness can be obtained only if the
size of the mesh is lower than a certain value limits given by our
calculations.
Keywords: Supersonic flow, viscous flow, finite volume, blunt
body.
1
10008333
Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry
Abstract: The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution.
Keywords: Hypersonic flow, nonequilibrium flow, shock wave, blunt body.