Open Science Research Excellence

Reza Ebrahimpour

Publications

3

Publications

3
915
A Trainable Neural Network Ensemble for ECG Beat Classification
Abstract:
This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.
Keywords:
ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform
2
7504
Low Resolution Face Recognition Using Mixture of Experts
Abstract:
Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.
Keywords:
Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.
1
7930
Hand Written Digit Recognition by Multiple Classifier Fusion based on Decision Templates Approach
Abstract:
Classifier fusion may generate more accurate classification than each of the basic classifiers. Fusion is often based on fixed combination rules like the product, average etc. This paper presents decision templates as classifier fusion method for the recognition of the handwritten English and Farsi numerals (1-9). The process involves extracting a feature vector on well-known image databases. The extracted feature vector is fed to multiple classifier fusion. A set of experiments were conducted to compare decision templates (DTs) with some combination rules. Results from decision templates conclude 97.99% and 97.28% for Farsi and English handwritten digits.
Keywords:
Decision templates, multi-layer perceptron, characteristics Loci, principle component analysis (PCA).