Open Science Research Excellence

Seung Young Kho

Publications

4

Publications

4
10007349
A Study of Mode Choice Model Improvement Considering Age Grouping
Abstract:

The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.

Keywords:
Age grouping, aging, mode choice model, multinomial logit model.
3
10007488
Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown
Abstract:

This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.

Keywords:
Capacity randomness, flow breakdown, freeway capacity, rainfall.
2
10007532
Latent Factors of Severity in Truck-Involved and Non-Truck-Involved Crashes on Freeways
Abstract:

Truck-involved crashes have higher crash severity than non-truck-involved crashes. There have been many studies about the frequency of crashes and the development of severity models, but those studies only analyzed the relationship between observed variables. To identify why more people are injured or killed when trucks are involved in the crash, we must examine to quantify the complex causal relationship between severity of the crash and risk factors by adopting the latent factors of crashes. The aim of this study was to develop a structural equation or model based on truck-involved and non-truck-involved crashes, including five latent variables, i.e. a crash factor, environmental factor, road factor, driver’s factor, and severity factor. To clarify the unique characteristics of truck-involved crashes compared to non-truck-involved crashes, a confirmatory analysis method was used. To develop the model, we extracted crash data from 10,083 crashes on Korean freeways from 2008 through 2014. The results showed that the most significant variable affecting the severity of a crash is the crash factor, which can be expressed by the location, cause, and type of the crash. For non-truck-involved crashes, the crash and environment factors increase severity of the crash; conversely, the road and driver factors tend to reduce severity of the crash. For truck-involved crashes, the driver factor has a significant effect on severity of the crash although its effect is slightly less than the crash factor. The multiple group analysis employed to analyze the differences between the heterogeneous groups of drivers.

Keywords:
Crash severity, structural equation modeling, truck-involved crashes, multiple group analysis, crash on freeway.
1
10008844
Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.
Keywords:
Data Estimation, link data, machine learning, road network.