Open Science Research Excellence

Sheng Gwo Chen

Publications

4

Publications

4
3254
Computations of Bezier Geodesic-like Curves on Spheres
Abstract:
It is an important problem to compute the geodesics on a surface in many fields. To find the geodesics in practice, however, the traditional discrete algorithms or numerical approaches can only find a list of discrete points. The first author proposed in 2010 a new, elegant and accurate method, the geodesic-like method, for approximating geodesics on a regular surface. This paper will present by use of this method a computation of the Bezier geodesic-like curves on spheres.
Keywords:
Geodesics, Geodesic-like curve, Spheres, Bezier.
3
14845
The Distance between a Point and a Bezier Curveon a Bezier Surface
Abstract:
The distance between two objects is an important problem in CAGD, CAD and CG etc. It will be presented in this paper that a simple and quick method to estimate the distance between a point and a Bezier curve on a Bezier surface.
Keywords:
Geodesic-like curve, distance, projection, Bezier.
2
10005660
A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces
Abstract:
The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.
Keywords:
Close surfaces, high-order approach, numerical solutions, reaction-diffusion systems.
1
10005661
A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces
Abstract:
In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.
Keywords:
Conservation laws, diffusion equations, Cahn-Hilliard Equations, evolving surfaces.