Open Science Research Excellence

Tomas Hirner

Publications

3

Publications

3
2672
Key Frames Extraction for Sign Language Video Analysis and Recognition
Abstract:
In this paper we proposed a method for finding video frames representing one sign in the finger alphabet. The method is based on determining hands location, segmentation and the use of standard video quality evaluation metrics. Metric calculation is performed only in regions of interest. Sliding mechanism for finding local extrema and adaptive threshold based on local averaging is used for key frames selection. The success rate is evaluated by recall, precision and F1 measure. The method effectiveness is compared with metrics applied to all frames. Proposed method is fast, effective and relatively easy to realize by simple input video preprocessing and subsequent use of tools designed for video quality measuring.
Keywords:
Key frame, video, quality, metric, MSE, MSAD, SSIM, VQM, sign language, finger alphabet.
2
3176
Fast Algorithm of Shot Cut Detection
Abstract:
In this paper we present a novel method, which reduces the computational complexity of abrupt cut detection. We have proposed fast algorithm, where the similarity of frames within defined step is evaluated instead of comparing successive frames. Based on the results of simulation on large video collection, the proposed fast algorithm is able to achieve 80% reduction of needed frames comparisons compared to actually used methods without the shot cut detection accuracy degradation.
Keywords:
Abrupt cut, fast algorithm, shot cut detection, Pearson correlation coefficient.
1
13528
Face Image Coding Using Face Prototyping
Abstract:

In this paper we present a novel approach for face image coding. The proposed method makes a use of the features of video encoders like motion prediction. At first encoder selects appropriate prototype from the database and warps it according to features of encoding face. Warped prototype is placed as first I frame. Encoding face is placed as second frame as P frame type. Information about features positions, color change, selected prototype and data flow of P frame will be sent to decoder. The condition is both encoder and decoder own the same database of prototypes. We have run experiment with H.264 video encoder and obtained results were compared to results achieved by JPEG and JPEG2000. Obtained results show that our approach is able to achieve 3 times lower bitrate and two times higher PSNR in comparison with JPEG. According to comparison with JPEG2000 the bitrate was very similar, but subjective quality achieved by proposed method is better.

Keywords:
Triangulation, H.264, Model-based coding, Average face