10

10

10001865

Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems

Model predictive control is a kind of optimal feedback
control in which control performance over a finite future is optimized
with a performance index that has a moving initial time and a moving
terminal time. This paper examines the stability of model predictive
control for linear discrete-time systems with additive stochastic
disturbances. A sufficient condition for the stability of the closed-loop
system with model predictive control is derived by means of a linear
matrix inequality. The objective of this paper is to show the results
of computational simulations in order to verify the effectiveness of
the obtained stability condition.

Computational simulations, optimal control, predictive
control, stochastic systems, discrete-time systems.

9

10002375

Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution

In recent decades, probabilistic constrained optimal
control problems have attracted much attention in many research
fields. Although probabilistic constraints are generally intractable
in an optimization problem, several tractable methods haven been
proposed to handle probabilistic constraints. In most methods,
probabilistic constraints are reduced to deterministic constraints
that are tractable in an optimization problem. However, there is a
gap between the transformed deterministic constraints in case of
known and unknown probability distribution. This paper examines
the conservativeness of probabilistic constrained optimization method
for unknown probability distribution. The objective of this paper is
to provide a quantitative assessment of the conservatism for tractable
constraints in probabilistic constrained optimization with unknown
probability distribution.

Optimal control, stochastic systems, discrete-time
systems, probabilistic constraints.

8

10005569

Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities

Recently, optimal control problems subject to probabilistic
constraints have attracted much attention in many research field. Although
probabilistic constraints are generally intractable in optimization problems,
several methods haven been proposed to deal with probabilistic constraints.
In most methods, probabilistic constraints are transformed to deterministic
constraints that are tractable in optimization problems. This paper examines
a method for transforming probabilistic constraints into deterministic
constraints for a class of probabilistic constrained optimal control problems.

Optimal control, stochastic systems, discrete-time systems,
probabilistic constraints.

7

10006052

Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Recent technological advance has prompted significant
interest in developing the control theory of quantum systems.
Following the increasing interest in the control of quantum
dynamics, this paper examines the control problem of Schrödinger
equation because quantum dynamics is basically governed by
Schrödinger equation. From the practical point of view, stochastic
disturbances cannot be avoided in the implementation of control
method for quantum systems. Thus, we consider here the robust
stabilization problem of Schrödinger equation against stochastic
disturbances. In this paper, we adopt model predictive control method
in which control performance over a finite future is optimized with
a performance index that has a moving initial and terminal time.
The objective of this study is to derive the stability criterion for
model predictive control of Schrödinger equation under stochastic
disturbances.

Optimal control, stochastic systems, quantum systems,
stabilization.

6

10006341

Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Recently, feedback control systems using random dither
quantizers have been proposed for linear discrete-time systems.
However, the constraints imposed on state and control variables
have not yet been taken into account for the design of feedback
control systems with random dither quantization. Model predictive
control is a kind of optimal feedback control in which control
performance over a finite future is optimized with a performance
index that has a moving initial and terminal time. An important
advantage of model predictive control is its ability to handle
constraints imposed on state and control variables. Based on the
model predictive control approach, the objective of this paper is to
present a control method that satisfies probabilistic state constraints
for linear discrete-time feedback control systems with random dither
quantization. In other words, this paper provides a method for
solving the optimal control problems subject to probabilistic state
constraints for linear discrete-time feedback control systems with
random dither quantization.

Optimal control, stochastic systems, discrete-time
systems, probabilistic constraints, random dither quantization.

5

10007864

Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

The random dither quantization method enables us
to achieve much better performance than the simple uniform
quantization method for the design of quantized control systems.
Motivated by this fact, the stochastic model predictive control
method in which a performance index is minimized subject to
probabilistic constraints imposed on the state variables of systems
has been proposed for linear feedback control systems with random
dither quantization. In other words, a method for solving optimal
control problems subject to probabilistic state constraints for linear
discrete-time control systems with random dither quantization has
been already established. To our best knowledge, however, the
feasibility of such a kind of optimal control problems has not
yet been studied. Our objective in this paper is to investigate the
feasibility of stochastic model predictive control problems for linear
discrete-time control systems with random dither quantization. To
this end, we provide the results of numerical simulations that verify
the feasibility of stochastic model predictive control problems for
linear discrete-time control systems with random dither quantization.

Model predictive control, stochastic systems,
probabilistic constraints, random dither quantization.

4

10009365

Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

A class of implicit systems is known as a more
generalized class of systems than a class of explicit systems. To
establish a control method for such a generalized class of systems, we
adopt model predictive control method which is a kind of optimal
feedback control with a performance index that has a moving
initial time and terminal time. However, model predictive control
method is inapplicable to systems whose all state variables are not
exactly known. In other words, model predictive control method is
inapplicable to systems with limited measurable states. In fact, it
is usual that the state variables of systems are measured through
outputs, hence, only limited parts of them can be used directly. It is
also usual that output signals are disturbed by process and sensor
noises. Hence, it is important to establish a state estimation method
for nonlinear implicit systems with taking the process noise and
sensor noise into consideration. To this purpose, we apply the model
predictive control method and unscented Kalman filter for solving
the optimization and estimation problems of nonlinear implicit
systems, respectively. The objective of this study is to establish a
model predictive control with unscented Kalman filter for nonlinear
implicit systems.

Model predictive control, unscented Kalman filter,
nonlinear systems, implicit systems.

3

10009724

Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither

The control problem of underactuated spacecrafts has
attracted a considerable amount of interest. The control method for
a spacecraft equipped with less than three control torques is useful
when one of the three control torques had failed. On the other hand,
the quantized control of systems is one of the important research
topics in recent years. The random dither quantization method that
transforms a given continuous signal to a discrete signal by adding
artificial random noise to the continuous signal before quantization
has also attracted a considerable amount of interest. The objective of
this study is to develop the control method based on random dither
quantization method for stabilizing the rotational motion of a rigid
spacecraft with two control inputs. In this paper, the effectiveness of
random dither quantization control method for the stabilization of
rotational motion of spacecrafts with two torque inputs is verified
by numerical simulations.

Spacecraft control, quantized control, nonlinear
control, random dither method.

2

10009731

Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics

Recently, crystal growth technologies have made
progress by the requirement for the high quality of crystal materials.
To control the crystal growth dynamics actively by external forces
is useuful for reducing composition non-uniformity. In this study,
a control method based on model predictive control using thermal
inputs is proposed for crystal growth dynamics of semiconductor
materials. The control system of crystal growth dynamics considered
here is governed by the continuity, momentum, energy, and mass
transport equations. To establish the control method for such thermal
fluid systems, we adopt model predictive control known as a kind
of optimal feedback control in which the control performance over
a finite future is optimized with a performance index that has a
moving initial time and terminal time. The objective of this study
is to establish a model predictive control method for crystal growth
dynamics of semiconductor materials.

Model predictive control, optimal control, crystal
growth, process control.

1

10009815

State Estimation Based on Unscented Kalman Filter for Burgers’ Equation

Controlling the flow of fluids is a challenging problem
that arises in many fields. Burgers’ equation is a fundamental
equation for several flow phenomena such as traffic, shock waves,
and turbulence. The optimal feedback control method, so-called
model predictive control, has been proposed for Burgers’ equation.
However, the model predictive control method is inapplicable to
systems whose all state variables are not exactly known. In practical
point of view, it is unusual that all the state variables of systems are
exactly known, because the state variables of systems are measured
through output sensors and limited parts of them can be only
available. In fact, it is usual that flow velocities of fluid systems
cannot be measured for all spatial domains. Hence, any practical
feedback controller for fluid systems must incorporate some type of
state estimator. To apply the model predictive control to the fluid
systems described by Burgers’ equation, it is needed to establish
a state estimation method for Burgers’ equation with limited
measurable state variables. To this purpose, we apply unscented
Kalman filter for estimating the state variables of fluid systems
described by Burgers’ equation. The objective of this study is to
establish a state estimation method based on unscented Kalman filter
for Burgers’ equation. The effectiveness of the proposed method is
verified by numerical simulations.

State estimation, fluid systems, observer systems,
unscented Kalman filter.