Open Science Research Excellence

Ye Liu

Publications

2

Publications

2
4953
An Integrated Natural Language Processing Approach for Conversation System
Abstract:

The main aim of this research is to investigate a novel technique for implementing a more natural and intelligent conversation system. Conversation systems are designed to converse like a human as much as their intelligent allows. Sometimes, we can think that they are the embodiment of Turing-s vision. It usually to return a predetermined answer in a predetermined order, but conversations abound with uncertainties of various kinds. This research will focus on an integrated natural language processing approach. This approach includes an integrated knowledge-base construction module, a conversation understanding and generator module, and a state manager module. We discuss effectiveness of this approach based on an experiment.

Keywords:
Conversation System, integrated knowledge-base construction, conversation understanding and generator, state manager
1
10009882
Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords:
Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.