32
542
Generator Capability Curve Constraint for PSO Based Optimal Power Flow
Abstract: An optimal power flow (OPF) based on particle swarm
optimization (PSO) was developed with more realistic generator
security constraint using the capability curve instead of only Pmin/Pmax
and Qmin/Qmax. Neural network (NN) was used in designing digital
capability curve and the security check algorithm. The algorithm is
very simple and flexible especially for representing non linear
generation operation limit near steady state stability limit and under
excitation operation area. In effort to avoid local optimal power flow
solution, the particle swarm optimization was implemented with
enough widespread initial population. The objective function used in
the optimization process is electric production cost which is
dominated by fuel cost. The proposed method was implemented at
Java Bali 500 kV power systems contain of 7 generators and 20
buses. The simulation result shows that the combination of generator
power output resulted from the proposed method was more economic
compared with the result using conventional constraint but operated
at more marginal operating point.
31
1077
Negative Slope Ramp Carrier Control for High Power Factor Boost Converters in CCM Operation
Abstract: This paper, a simple continuous conduction mode (CCM) pulse-width-modulated (PWM) controller for high power factor boost converters is introduced. The duty ratios were obtained by the comparison of a sensed signal from inductor current or switch current and a negative slope ramp carrier waveform in each switching period. Due to the proposed control requires only the inductor current or switch current sensor and the output voltage sensor, its circuit implementation was very simple. To verify the proposed control, the circuit experimentation of a 350 W boost converter with the proposed control was applied. From the results, the input current waveform was shaped to be closely sinusoidal, implying high power factor and low harmonics.
30
1231
Coherence Analysis between Respiration and PPG Signal by Bivariate AR Model
Abstract: PPG is a potential tool in clinical applications. Among such, the relationship between respiration and PPG signal has attracted attention in past decades. In this research, a bivariate AR spectral estimation method was utilized for the coherence analysis between these two signals. Ten healthy subjects participated in this research with signals measured at different respiratory rates. The results demonstrate that high coherence exists between respiration and PPG signal, whereas the coherence disappears in breath-holding experiments. These results imply that PPG signal reveals the respiratory information. The utilized method may provide an attractive alternative approach for the related researches.
29
1258
Tabu Search Approach to Solve Routing Issues in Communication Networks
Abstract: Optimal routing in communication networks is a
major issue to be solved. In this paper, the application of Tabu Search
(TS) in the optimum routing problem where the aim is to minimize
the computational time and improvement of quality of the solution in
the communication have been addressed. The goal is to minimize the
average delays in the communication. The effectiveness of Tabu
Search method is shown by the results of simulation to solve the
shortest path problem. Through this approach computational cost can
be reduced.
28
1706
Reducing the Short Circuit Levels in Kuwait Transmission Network (A Case Study)
Abstract: Preliminary studies on Kuwait high voltage
transmission system show significant increase in the short circuit
level at some of the grid substations and some generating stations.
This increase results from the growth in the power transmission
systems in size and complexity. New generating stations are expected
to be added to the system within the next few years. This paper
describes the study analysis performed to evaluate the available and
potential solutions to control SC levels in Kuwait power system. It
also presents a modified planning of the transmission network in
order to fulfill this task.
27
2052
The Parameters Analysis for the Intersection Collision Avoidance Systems Based on Radar Sensors
Abstract: This paper mainly studies the analyses of parameters
in the intersection collision avoidance (ICA) system based on the radar
sensors. The parameters include the positioning errors, the repeat
period of the radar sensor, the conditions of potential collisions of two
cross-path vehicles, etc. The analyses of the parameters can provide
the requirements, limitations, or specifications of this ICA system. In
these analyses, the positioning errors will be increased as the measured
vehicle approach the intersection. In addition, it is not necessary to
implement the radar sensor in higher position since the positioning
sensitivities become serious as the height of the radar sensor increases.
A concept of the safety buffer distances for front and rear of the
measured vehicle is also proposed. The conditions for potential
collisions of two cross-path vehicles are also presented to facilitate the
computation algorithm.
26
2282
Implementation of Feed-in Tariffs into Multi-Energy Systems
Abstract: This paper considers the influence of promotion
instruments for renewable energy sources (RES) on a multi-energy
modeling framework. In Europe, so called Feed-in Tariffs are
successfully used as incentive structures to increase the amount of
energy produced by RES. Because of the stochastic nature of large
scale integration of distributed generation, many problems have
occurred regarding the quality and stability of supply. Hence, a
macroscopic model was developed in order to optimize the power
supply of the local energy infrastructure, which includes electricity,
natural gas, fuel oil and district heating as energy carriers. Unique
features of the model are the integration of RES and the adoption of
Feed-in Tariffs into one optimization stage. Sensitivity studies are
carried out to examine the system behavior under changing profits
for the feed-in of RES. With a setup of three energy exchanging
regions and a multi-period optimization, the impact of costs and
profits are determined.
25
3199
Analysis of Electromagnetic Field Effects Using FEM for Transmission Lines Transposition
Abstract: This paper presents the mathematical model of electric field and magnetic field in transmission system, which performs in second-order partial differential equation. This research has conducted analyzing the electromagnetic field radiating to atmosphere around the transmission line, when there is the transmission line transposition in case of long distance distribution. The six types of 500 kV transposed HV transmission line with double circuit will be considered. The computer simulation is applied finite element method that is developed by MATLAB program. The problem is considered to two dimensions, which is time harmonic system with the graphical performance of electric field and magnetic field. The impact from simulation of six types long distance distributing transposition will not effect changing of electric field and magnetic field which surround the transmission line.
24
3705
The Project of Three Photovoltaic Systems in an Italian Natural Park
Abstract: The development of renewable energies - particularly energy from wind, water, solar power and biomass - is a central aim of the European Commission's energy policy. There are several reasons for this choice: renewable energies are sustainable, nonpolluting, widely available and clean. Increasing the share of renewable energy in the energy balance enhances sustainability. It also helps to improve the security of energy supply by reducing the Community's growing dependence on imported energy sources.In this paper it was studied the possibility to realize three photovoltaic systems in the Italian Natural Park “Gola della Rossa e di Frasassi". The first photovoltaic system is a grid-connected system for Services and Documentation Center of Castelletta with a nominal power of about 6 kWp. The second photovoltaic system is a grid-connected integrated system on the ticket office-s roof with a nominal power of about 4 kWp. The third project is set up by five grid-connected systems integrated on the roofs of the bungalows in Natural Park-s tourist camping with a nominal power of about 10 kWp. The electricity which is generated by all these plants is purchased according to the Italian program called “Conto Energia". Economical analysis and the amount of the avoided CO2 emissions are elaborated for these photovoltaic systems.
23
3856
The Use of Voltage Stability Indices and Proposed Instability Prediction to Coordinate with Protection Systems
Abstract: This paper proposes a methodology for mitigating the occurrence of cascading failure in stressed power systems. The methodology is essentially based on predicting voltage instability in the power system using a voltage stability index and then devising a corrective action in order to increase the voltage stability margin. The paper starts with a brief description of the cascading failure mechanism which is probable root cause of severe blackouts. Then, the voltage instability indices are introduced in order to evaluate stability limit. The aim of the analysis is to assure that the coordination of protection, by adopting load shedding scheme, capable of enhancing performance of the system after the major location of instability is determined. Finally, the proposed method to generate instability prediction is introduced.
22
3987
Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization
Abstract: This paper presents a method of model selection and
identification of Hammerstein systems by hybridization of the genetic
algorithm (GA) and particle swarm optimization (PSO). An unknown
nonlinear static part to be estimated is approximately represented
by an automatic choosing function (ACF) model. The weighting
parameters of the ACF and the system parameters of the linear
dynamic part are estimated by the linear least-squares method. On
the other hand, the adjusting parameters of the ACF model structure
are properly selected by the hybrid algorithm of the GA and PSO,
where the Akaike information criterion is utilized as the evaluation
value function. Simulation results are shown to demonstrate the
effectiveness of the proposed hybrid algorithm.
21
5689
Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method
Abstract: This paper presents the simulation results of electric field and potential distributions along surface of silicone rubber polymer insulators under clean and various contamination conditions with/without water droplets. Straight sheds insulator having leakage distance 290 mm was used in this study. Two type of contaminants, playwood dust and cement dust, have been studied the effect of contamination on the insulator surface. The objective of this work is to comparison the effect of contamination on potential and electric field distributions along the insulator surface when water droplets exist on the insulator surface. Finite element method (FEM) is adopted for this work. The simulation results show that contaminations have no effect on potential distribution along the insulator surface while electric field distributions are obviously depended on contamination conditions.
20
6333
Primer Design with Specific PCR Product using Particle Swarm Optimization
Abstract: Before performing polymerase chain reactions (PCR), a feasible primer set is required. Many primer design methods have been proposed for design a feasible primer set. However, the majority of these methods require a relatively long time to obtain an optimal solution since large quantities of template DNA need to be analyzed. Furthermore, the designed primer sets usually do not provide a specific PCR product. In recent years, evolutionary computation has been applied to PCR primer design and yielded promising results. In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve primer design problems associated with providing a specific product for PCR experiments. A test set of the gene CYP1A1, associated with a heightened lung cancer risk was analyzed and the comparison of accuracy and running time with the genetic algorithm (GA) and memetic algorithm (MA) was performed. A comparison of results indicated that the proposed PSO method for primer design finds optimal or near-optimal primer sets and effective PCR products in a relatively short time.
19
6402
Hybrid Power – Application for Tourism in Isolated Areas
Abstract: The rapidly increasing costs of power line extensions
and fossil fuel, combined with the desire to reduce carbon dioxide
emissions pushed the development of hybrid power system suited for
remote locations, the purpose in mind being that of autonomous local
power systems. The paper presents the suggested solution for a “high
penetration" hybrid power system, it being determined by the
location of the settlement and its “zero policy" on carbon dioxide
emissions. The paper focuses on the technical solution and the power
flow management algorithm of the system, taking into consideration
local conditions of development.
18
6444
Dynamic Performances of Tubular Linear Induction Motor for Pneumatic Capsule Pipeline System
Abstract: Tubular linear induction motor (TLIM) can be used as a capsule pump in a large pneumatic capsule pipeline (PCP) system. Parametric performance evaluation of the designed 1-meter diameter PCP-TLIM system yields encouraging results for practical implementation. The capsule thrust and speed inside the TLIM pump can be calculated from the combination of the PCP fluid mechanics and the TLIM equations. The TLIM equivalent circuits derived from those of the conventional three-phase induction motor are used as a model to predict the static test results of a small-scale PCP-TLIM system. In this paper, additional dynamic tests are performed on the same small-scale PCP-TLIM system with two capsules of different diameters. The behaviors of the capsule inside the pump are observed and analyzed. The dynamic performances from the dynamic tests are compared with the theoretical predictions based on the TLIM equivalent circuit model.
17
7078
A Tutorial on Dynamic Simulation of DC Motor and Implementation of Kalman Filter on a Floating Point DSP
Abstract: With the advent of inexpensive 32 bit floating point digital signal processor-s availability in market, many computationally intensive algorithms such as Kalman filter becomes feasible to implement in real time. Dynamic simulation of a self excited DC motor using second order state variable model and implementation of Kalman Filter in a floating point DSP TMS320C6713 is presented in this paper with an objective to introduce and implement such an algorithm, for beginners. A fractional hp DC motor is simulated in both Matlab® and DSP and the results are included. A step by step approach for simulation of DC motor in Matlab® and “C" routines in CC Studio® is also given. CC studio® project file details and environmental setting requirements are addressed. This tutorial can be used with 6713 DSK, which is based on floating point DSP and CC Studio either in hardware mode or in simulation mode.
16
7719
Design of Extremum Seeking Control with PD Accelerator and its Application to Monod and Williams-Otto Models
Abstract: In this paper, we are concerned with the design and
its simulation studies of a modified extremum seeking control for
nonlinear systems. A standard extremum seeking control has a simple
structure, but it takes a long time to reach an optimal operating point.
We consider a modification of the standard extremum seeking control
which is aimed to reach the optimal operating point more speedily
than the standard one. In the modification, PD acceleration term
is added before an integrator making a principal control, so that it
enables the objects to be regulated to the optimal point smoothly. This
proposed method is applied to Monod and Williams-Otto models to
investigate its effectiveness. Numerical simulation results show that
this modified method can improve the time response to the optimal
operating point more speedily than the standard one.
15
8181
An Analysis of the Optimization Condition of Plasma Generator for Air Conditioner System
Abstract: This research aimed to develop plasma system used in air conditioners. This developed plasma system could be installed in the air conditioners - all split type. The quality of air could be improved to be equal to present plasma system. Development processes were as follows: 1) to study the plasma system used in the air conditioners, 2) to design a plasma generator, 3) to develop the plasma generator, and 4) to test its performance in many types of the air conditioners. This plasma system was developed by AC high voltage – 14 kv with a frequency of 50 kHz. Carbon was a conductor to generate arc in air purifier system. The research was tested by installing the plasma generator in the air conditioners - wall type. Whereas, there were 3 types of installations: air flow out, air flow in, and room center. The result of the plasma generator installed in the air conditioners, split type, revealed that the air flow out installation provided the highest average of o-zone at 223 mg/h. This type of installation provided the highest efficiency of air quality improvement. Moreover, the air flow in installation and the room center installation provided the average of the o-zone at 163 mg/h and 64 mg/h, respectively.
14
9262
Investigation of Transmission Line Overvoltages and their Deduction Approach
Abstract: The two significant overvoltages in power system,
switching overvoltage and lightning overvoltage, are investigated in
this paper. Firstly, the effect of various power system parameters on
Line Energization overvoltages is evaluated by simulation in ATP.
The dominant parameters include line parameters; short-circuit
impedance and circuit breaker parameters. Solutions to reduce
switching overvoltages are reviewed and controlled closing using
switchsync controllers is proposed as proper method.
This paper also investigates lightning overvoltages in the
overhead-cable transition. Simulations are performed in
PSCAD/EMTDC. Surge arresters are applied in both ends of cable to
fulfill the insulation coordination. The maximum amplitude of
overvoltages inside the cable is surveyed which should be of great
concerns in insulation coordination studies.
13
10246
Study on the Characteristics of the Measurement System for pH Array Sensors
Abstract: A measurement system for pH array sensors is
introduced to increase accuracy, and decrease non-ideal effects
successfully. An array readout circuit reads eight potentiometric
signals at the same time, and obtains an average value. The deviation
value or the extreme value is counteracted and the output voltage is a
relatively stable value. The errors of measuring pH buffer solutions are
decreased obviously with this measurement system, and the non-ideal
effects, drift and hysteresis, are lowered to 1.638mV/hr and 1.118mV,
respectively. The efficiency and stability are better than single sensor.
The whole sensing characteristics are improved.
12
10609
Prediction of the Characteristics of Transformer Oil under Different Operation Conditions
Abstract: Power systems and transformer are intrinsic apparatus, therefore its reliability and safe operation is important to determine their operation conditions, and the industry uses quality control tests in the insulation design of oil filled transformers. Hence the service period effect on AC dielectric strength is significant. The effect of aging on transformer oil physical, chemical and electrical properties was studied using the international testing methods for the evaluation of transformer oil quality. The study was carried out on six transformers operate in the field and for monitoring periods over twenty years. The properties which are strongly time dependent were specified and those which have a great impact on the transformer oil acidity, breakdown voltage and dissolved gas analysis were defined. Several tests on the transformers oil were studied to know the time of purifying or changing it, moreover prediction of the characteristics of it under different operation conditions.
11
10879
Optimization of Distributed Processors for Power System: Kalman Filters using Petri Net
Abstract: The growth and interconnection of power networks in many regions has invited complicated techniques for energy management services (EMS). State estimation techniques become a powerful tool in power system control centers, and that more information is required to achieve the objective of EMS. For the online state estimator, assuming the continuous time is equidistantly sampled with period Δt, processing events must be finished within this period. Advantage of Kalman Filtering (KF) algorithm in using system information to improve the estimation precision is utilized. Computational power is a major issue responsible for the achievement of the objective, i.e. estimators- solution at a small sampled period. This paper presents the optimum utilization of processors in a state estimator based on KF. The model used is presented using Petri net (PN) theory.
10
10937
Design of Measurement Interface and System for Ion Sensors
Abstract: A measurement system was successfully fabricated to
detect ion concentrations (hydrogen and chlorine) in this study.
PIC18F4520, the microcontroller was used as the control unit in the
measurement system. The measurement system was practically used
to sense the H+ and Cl- in different examples, and the pH and pCl
values were exhibited on real-time LCD display promptly. In the study,
the measurement method is used to judge whether the response voltage
is stable. The change quantity is smaller than 0.01%, that the present
response voltage compares with next response voltage for H+
measurement, and the above condition is established only 6 sec.
Besides, the change quantity is smaller than 0.01%, that the present
response voltage compares with next response voltage for Clmeasurement,
and the above condition is established only 5 sec.
Furthermore, the average error quantities would also be considered,
and they are 0.05 and 0.07 for measurements of pH and pCl values,
respectively.
9
11833
Performance Analysis of Routing Protocol for WSN Using Data Centric Approach
Abstract: Sensor Network are emerging as a new tool for
important application in diverse fields like military surveillance,
habitat monitoring, weather, home electrical appliances and others.
Technically, sensor network nodes are limited in respect to energy
supply, computational capacity and communication bandwidth. In
order to prolong the lifetime of the sensor nodes, designing efficient
routing protocol is very critical. In this paper, we illustrate the
existing routing protocol for wireless sensor network using data
centric approach and present performance analysis of these protocols.
The paper focuses in the performance analysis of specific protocol
namely Directed Diffusion and SPIN. This analysis reveals that the
energy usage is important features which need to be taken into
consideration while designing routing protocol for wireless sensor
network.
8
12059
Narrowband Speech Hiding using Vector Quantization
Abstract: In this work we introduce an efficient method to limit
the impact of the hiding process on the quality of the cover speech.
Vector quantization of the speech spectral information reduces drastically
the number of the secret speech parameters to be embedded
in the cover signal. Compared to scalar hiding, vector quantization
hiding technique provides a stego signal that is indistinguishable from
the cover speech. The objective and subjective performance measures
reveal that the current hiding technique attracts no suspicion about the
presence of the secret message in the stego speech, while being able
to recover an intelligible copy of the secret message at the receiver
side.
7
12787
Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System
Abstract: This paper presents performance analysis of the
Evolutionary Programming-Artificial Neural Network (EPANN)
based technique to optimize the architecture and training parameters
of a one-hidden layer feedforward ANN model for the prediction of
energy output from a grid connected photovoltaic system. The ANN
utilizes solar radiation and ambient temperature as its inputs while the
output is the total watt-hour energy produced from the grid-connected
PV system. EP is used to optimize the regression performance of the
ANN model by determining the optimum values for the number of
nodes in the hidden layer as well as the optimal momentum rate and
learning rate for the training. The EPANN model is tested using two
types of transfer function for the hidden layer, namely the tangent
sigmoid and logarithmic sigmoid. The best transfer function, neural
topology and learning parameters were selected based on the highest
regression performance obtained during the ANN training and testing
process. It is observed that the best transfer function configuration for
the prediction model is [logarithmic sigmoid, purely linear].
6
13152
A Fast Adaptive Tomlinson-Harashima Precoder for Indoor Wireless Communications
Abstract: A fast adaptive Tomlinson Harashima (T-H) precoder structure is presented for indoor wireless communications, where the channel may vary due to rotation and small movement of the mobile terminal. A frequency-selective slow fading channel which is time-invariant over a frame is assumed. In this adaptive T-H precoder, feedback coefficients are updated at the end of every uplink frame by using system identification technique for channel estimation in contrary with the conventional T-H precoding concept where the channel is estimated during the starting of the uplink frame via Wiener solution. In conventional T-H precoder it is assumed the channel is time-invariant in both uplink and downlink frames. However assuming the channel is time-invariant over only one frame instead of two, the proposed adaptive T-H precoder yields better performance than conventional T-H precoder if the channel is varied in uplink after receiving the training sequence.
5
14184
An Investigation of the Cu-Ni Compound Cathode Materials Affecting on Transient Recovery Voltage
Abstract: The purpose of this research was to analyze and compare the instability of a contact surface between Copper and Nickel an alloy cathode in vacuum, the different ratio of Copper and Copper were conducted at 1%, 2% and 4% by using the cathode spot model. The transient recovery voltage is predicted. The cathode spot region is recognized as the collisionless space charge sheath connected with singly ionized collisional plasma. It was found that the transient voltage is decreased with increasing the percentage of an amount of Nickel in cathode materials.
4
14305
Performance of a Connected Random Covered Energy Efficient Wireless Sensor Network
Abstract: For the sensor network to operate successfully, the active nodes should maintain both sensing coverage and network connectivity. Furthermore, scheduling sleep intervals plays critical role for energy efficiency of wireless sensor networks. Traditional methods for sensor scheduling use either sensing coverage or network connectivity, but rarely both. In this paper, we use random scheduling for sensing coverage and then turn on extra sensor nodes, if necessary, for network connectivity. Simulation results have demonstrated that the number of extra nodes that is on with upper bound of around 9%, is small compared to the total number of deployed sensor nodes. Thus energy consumption for switching on extra sensor node is small.
3
14756
Long-term Monitor of Seawater by using TiO2:Ru Sensing Electrode for Hard Clam Cultivation
Abstract: The hard clam (meretrix lusoria) cultivated industry
has been developed vigorously for recent years in Taiwan, and
seawater quality determines the cultivated environment. The pH
concentration variation affects survival rate of meretrix lusoria
immediately. In order to monitor seawater quality, solid-state sensing
electrode of ruthenium-doped titanium dioxide (TiO2:Ru) is developed
to measure hydrogen ion concentration in different cultivated
solutions. Because the TiO2:Ru sensing electrode has high chemical
stability and superior sensing characteristics, thus it is applied as a pH
sensor. Response voltages of TiO2:Ru sensing electrode are readout by
instrument amplifier in different sample solutions. Mean sensitivity
and linearity of TiO2:Ru sensing electrode are 55.20 mV/pH and 0.999
from pH1 to pH13, respectively. We expect that the TiO2:Ru sensing
electrode can be applied to real environment measurement, therefore
we collect two sample solutions by different meretrix lusoria
cultivated ponds in the Yunlin, Taiwan. The two sample solutions are
both measured for 200 seconds after calibration of standard pH buffer
solutions (pH7, pH8 and pH 9). Mean response voltages of sample 1
and sample 2 are -178.758 mV (Standard deviation=0.427 mV) and
-180.206 mV (Standard deviation =0.399 mV), respectively. Response
voltages of the two sample solutions are between pH 8 and pH 9 which
conform to weak alkali range and suitable meretrix lusoria growth. For
long-term monitoring, drift of cultivated solutions (sample 1 and
sample 2) are 1.16 mV/hour and 1.03 mV/hour, respectively.
2
14883
A New Cut–Through Mechanism in IEEE 802.16 Mesh Networks
Abstract: IEEE 802.16 is a new wireless technology standard, it
has some advantages, including wider coverage, higher bandwidth,
and QoS support. As the new wireless technology for last mile
solution, there are designed two models in IEEE 802.16 standard. One
is PMP (point to multipoint) and the other is Mesh. In this paper we
only focus on IEEE 802.16 Mesh model. According to the IEEE
802.16 standard description, Mesh model has two scheduling modes,
centralized and distributed. Considering the pros and cons of the two
scheduling, we present the combined scheduling QoS framework that
the BS (Base Station) controls time frame scheduling and selects the
shortest path from source to destination directly. On the other hand, we
propose the Expedited Queue mechanism to cut down the transmission
time. The EQ mechanism can reduce a lot of end-to-end delay in our
QoS framework. Simulation study has shown that the average delay is
smaller than contrasts. Furthermore, our proposed scheme can also
achieve higher performance.
1
15245
Flexible Sensor Array with Programmable Measurement System
Abstract: This study is concerned with pH solution detection
using 2 × 4 flexible sensor array based on a plastic polyethylene
terephthalate (PET) substrate that is coated a conductive layer and a
ruthenium dioxide (RuO2) sensitive membrane with the technologies
of screen-printing and RF sputtering. For data analysis, we also
prepared a dynamic measurement system for acquiring the response
voltage and analyzing the characteristics of the working electrodes
(WEs), such as sensitivity and linearity. In this condition, an array
measurement system was designed to acquire the original signal from
sensor array, and it is based on the method of digital signal processing
(DSP). The DSP modifies the unstable acquisition data to a direct
current (DC) output using the technique of digital filter. Hence, this
sensor array can obtain a satisfactory yield, 62.5%, through the design
measurement and analysis system in our laboratory.