Security Architecture for Cloud Networking: A Survey

Vishnu Pratap Singh Kirar

Abstract—In the cloud computing hierarchy IaaS is the lowest layer, all other layers are built over it. Thus it is the most important layer of cloud and requisite more importance. Along with advantages IaaS faces some serious security related issue. Mainly Security focuses on Integrity, confidentiality and availability. Cloud computing facilitate to share the resources inside as well as outside of the cloud. On the other hand, cloud still not in the state to provide surety to 100% data security. Cloud provider must ensure that end user/client get a Quality of Service. In this report we describe possible aspects of cloud related security.


I. INTRODUCTION

CLOUD computing is fastest growing area in the field of research and development. The computing industry has been changed in last decades, as it was based on centralized system in past i.e. client-server model but as the technology is advanced it become virtual centralized i.e. web base model. In simple words we can explain that cloud computing a technique that can provide services online over on Internet. In cloud computing service provider deliver various services and storage capacity as a service to end user or client.

Concept of cloud computing is an outcome of service model and deployment model. Services of cloud computing mainly categorized in three layers: Infrastructure as a service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). These combine services form a service model for cloud computing. Similarly deployment mode for computing divided into the public cloud, private cloud, and hybrid cloud. The cloud deployment can be explained in the relationship between user and enterprise, which provide the services. Public cloud services are sold to user for utility purpose, private cloud can be used by any organization for their datacenters; it is not for general user [1]. Thus cloud computing provide opportunities to small industries to outsource their services as they can built software’s and applications online. These services are available as pay-as-you-go where user pay only for services and resources they actually use for a particular time period.

Clouds have different architectures based on the services that they provide to end user or client. The vendor of cloud stores their data in centralized location it is known as datacenter. The client does not know about the location of datacenter. Vendor only provides services and client only access the cloud services. Client does not have any control on datacenter. Communication between service provider and client is established only on Internet. Now Internet becomes a biggest platform for research and development of various emerging technologies.

Cloud computing is very efficient and very useful because it reduce the operating cost, maximize the utilization of resources and it is easy to use and easily accessible [2]. At the same time it is flexible and inexpensive to use the desired services. Thus, authenticity, indignity, availability, security and privacy are essential for cloud service provider and client.

Based on the service model IaaS is a basic layer of cloud computing and PaaS and SaaS are connecting and depending on it. Thus, overall Security of cloud depends upon IaaS layer.

In this paper we discuss about security concern of IaaS layer i.e. what are the main challenges for security of IaaS and what are the solutions. The background of security of cloud computing and its layer will describe in Section II. The secondary research results are explained in Section III. The reflection of study provides in the Section IV. In last section we conclude our results and paper.

II. BACKGROUND

In present scenario, various service providers on Internet are involved in development of their own cloud-computing environment for example Microsoft, Amazon and Google. Eric Schmidt from Google first introduce the concept of cloud computing. As we discus in first part cloud computing is combination of service model and deployment mode. Fig. 1 describe the cloud computing. The brokering goals of these layers are define in Table I.

A. Software as a Service

At this layer user can access the services that are provided by cloud service provider. These services include e-mail service, online antivirus, video chat and sharing. Most of the services are free.

B. Platform as a Service

PaaS provide a variety of services for developers. Developer does not require downloading any software. Vendor provides all resources. User can built any application, software, and perform the software testing. Example of PaaS is Facebook development.

C. Infrastructure as a Service

IaaS refers as a service provider; service provider performs the control of whole cloud. It can be access remotely. The service that provided by vendor may be paid or free, it depends on that service or tool.

Vishnu Pratap Singh Kirar is with the Computer Science Department, University of Bedfordshire, Luton, United Kingdom. (Phone: +44 7405400182; +91 9826020913; e-mail: Vishnu.kirar@study.beds.ac.uk).
TABLE I
THE BROKERING GOAL OF SERVICE MODEL

<table>
<thead>
<tr>
<th>Layer/Service</th>
<th>Parameter</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>SaaS</td>
<td>User requirements</td>
<td>Maximum QoS delivered</td>
</tr>
<tr>
<td></td>
<td>Service level agreement</td>
<td>Minimize cost</td>
</tr>
<tr>
<td>PaaS</td>
<td>Software Licensing</td>
<td>Functionality</td>
</tr>
<tr>
<td></td>
<td>Compiling requirement</td>
<td>Functionality</td>
</tr>
<tr>
<td></td>
<td>Runtime requirement</td>
<td>Optimize application</td>
</tr>
<tr>
<td></td>
<td>Runtime licensing</td>
<td>Fault tolerance</td>
</tr>
<tr>
<td>IaaS</td>
<td>Resource characteristic</td>
<td>Maximize cost-effectiveness</td>
</tr>
<tr>
<td></td>
<td>Monitoring data</td>
<td>Acceleration</td>
</tr>
<tr>
<td></td>
<td>Modeling data</td>
<td>Conservation</td>
</tr>
<tr>
<td></td>
<td>Constraints</td>
<td>Maximize energy efficiency</td>
</tr>
</tbody>
</table>

Services that provided by any cloud are clouds computing cloud storage, cloud operating system, cloud software and many more. Cloud provides a virtual interface between end user and vendor. The security related problem that faces by cloud system are mainly due to following reasons. Large amount of user data is stored in cloud. Nowadays personal data is valuable for many industries. Thus it is possible that third part may leak your information that stored in the cloud. VM architecture any one of the user can easily access the information of other user by using hacking tools. Because cloud is an open source thus there is need to implement some strict protocol on VM. Overload of traffic some time cloud may be crash or breakdown. Cloud has some limitation of accessibility if number of user increases at a particular time than cloud does not provide their services. Data storage security for user is main issue of security. Data must be secure so that user can access it when needed.

Cloud standard must be implemented on every system because if user wants to access more than one cloud than he can be easily accesses them without any interruption or any operating system dependency. Hence there is a need to build a standard for all cloud and they must follow them.

III. RELATED WORK

Cloud computing is facility of computing and storage capacity and it give a variety of choices along with many advantages to end-users. The cloud storage mainly divided into two classes: first cloud storage designed using cryptographic method but not follows the cryptography structure and second cloud storage design by follows the structure as well as method of cryptography. To secure cloud storage many researchers gave many proposals, which are based on cryptography [3]. Kamara et al. propose architecture by using non-standard cryptographic techniques. Barua et al. propose new scheme for cloud storage based on cipher text policy and encryption based on attribute as well as identity. Zarandoon et al. work on user-centric privacy preserving cryptographic access controlled protocol (K2C). Somorovsky et al. proposed a work on public cloud storage by introducing XML encryption.

Soel et al. propose a secure storage service for IaaS cloud users. They describe a model to secure the computing environment by using crypto-processors. To describe the solution they explain the VM [4]. VM consist mainly three objects: processing, memory and I/O. VM is secure until processing and memory is protected along with if there is no I/O operation is performed. But it is not an ideal condition because without I/O the existence of cloud is not use worthy. Hence, Soel et al. apply crypto-processors at I/O devices. Soel et al. explain the importance of hypervisor (a management OS) in VM. An attacker can get sensitive information via the management OS or direct access of dedicated privilege.

Soel et al. proposed some requirement for secure storage like isolated cryptographic operation, infrastructure cryptographic operation and key protection. They also suggest to place crypto-processor in the management OS. By using crypto-processors even cloud vendor cannot access the users information because the decrypted data are not in the domain of management OS.

At the present time thousand cloud servers put forward their services in different layer of software. But Hamid Banirostam et al. scrutinized lower layer of the cloud computing which called Infrastructure as a service (IaaS) and come across with the problem in it [5]. The problem is that who use the cloud computing they do not have privacy on their personal information or data. Because at this time, cloud computing do not offer any proper tool for user’s verification of confidentiality, privacy policy, computer accuracy and data integrity. Because of that problem, Users’ and companies’ information or data are not secure. The major anxiety is to attack of privacy which may be internal or external. Attack on the information or data of a private company can affect its reputation.

To overcome the problem of cloud computing Hamid Banirostam et al. bring a new approach called Trusted Cloud Computing Infrastructure inspired by Trusted Cloud Computing Platform. They suggest that information or data should be encrypted. So, to go with this approach and make a cloud computing more secure and trustworthy User Trusted Entity (UTE) is introduced by them and furthermore, the main benefit of User Trusted Entity (UTE) is that without permission of user, manager of Infrastructure as a Service (IaaS) system do not get in the way [6].

They also proposed about Trusted Computing Group (TCG). To build a trusted platform TCG has addressed a
number of hardware and software technologies. Standard for
the chip of Trusted Platform Module (TPM) which is packed
with hardware products that offered by TCG. The physical
host would know some of the hidden action that is
unchangeable because of TPM chip includes an Endorsement
Private Key (EK). To make a remote verification potential
Trusted Platforms build characteristics of TPM chips. They
defined two components of cloud computing: Trusted VM
Monitor (TVMM) and Trusted Coordinator (TC).

TVMM runs in every backend node of TCCI, which is the
host of client. TVMM also look after to its information over
time. TVMM also cooperate with TC in each node, which is
running that includes: Limit a VM to a trusted node and
protecting the position of VM against control or relocation
while passing network in vital moments.

Cloud computing offers services at various levels such as
SaaS, PaaS, and IaaS. These services include virtual resources
provide service to within its limits [7]. For Example, network
loading and security architecture. The main code of
architecture is as cloud services to service users. According to
services, it operated in a virtual machine like as Amazon’s
EC2, with in center of infrastructure. On the other hand,
virtual resource is required a moving position for optimization
issue because of security reasons flexible virtual resources
creates new faces. When user moves to other network
infrastructure track the services which user is a demand.

In the concept of Security Architecture, research shows
some roles those are namely, Service User, Service Provider,
Virtual Infrastructure provider and Virtual Resource [8]. All
roles are interacting with each other such as service provider
provides services to User. This service is only valid for
authorized user. Service Provider connects services between
User and a virtual Infrastructure Provider. It represent virtual
IT and Provider used this information implementation
services. Basically, the virtual infrastructure has an individual
hardware, when it is turning on. Virtual Resource is unit of
processing and data storing, which is, hold on physical
resource of Provider.

In the case of Cloud computing, user wants to use security
services it is based on policies. Nowadays, users verify safety
parameters by using security requirements [9]. If provider
replaces services then user checks manually requirements.
Moreover, security parameter as a data encryption is in storing
into security view. Security policy supports AES encryption
methodology base on Key length. It implements into
parameters of security side. In this subject, cost is main topic
of infrastructure but it is not part of research.

IV. REFLECTION OF SURVEY

Cloud computing overlaps with centralized, parallel and
distributed computing. Cloud computing is a computing
model, which is based on distributed computing, parallel,
processing and virtualization and grid computing. As
computing technology become more advance the risk of attack
on information and security become at the first place. To
guarantee a secure storage service, proposed architected by
Soel et al. can easily achieve plain text isolation from the
hypervisor and safe system state guarantee. Proposed
technique by Soel et al. is very secure, it gives a choice to
conventional user to switch from physical server to cloud
derver. Cloud is better option than physical server because it is
cost effective, flexible and easy to use. As Soel et al. introduce
crypto-processor for secure the storage services and they also
state that they are working on to implement it on PCI device.
If they are successfully implemented this device than these
techniques can be implemented on other layers i.e. PaaS and
SaaS. In my point of view the things that should be kept in
account and which are very crucial, are the cost effectiveness
and flexibility and maximum utilization [10]. So the system is
very effective only when they apply the crypto-processor and
the cost of system remain same or may be reduce.

The ideas that proposed by different authors and make a
framework to implement cryptographic methods like AES
because it is very secure method due to use of repetition
rounds of encryption and decryption side. Also it is adopted all
over in the world to the cost of implementation will be less as
comparative to introduce a new method for security.

In the lower layer of the Infrastructure as a Service (IaaS)
have some problem and cloud computing does not support any
suitable tool for security. So, Hamid Banistaram et al. [5]
introduce a TCCI approach to overcome that problem and for
that UTE, TVMM, TC, TCG and EK all components or chip
are very useful in plenty of way to put further functionality or
secure privacy to make more attractive and trustworthy that is
why this approach called Trusted Cloud Computing
Infrastructure (TCCI). That approach inspired by Trusted
Cloud Computing Platform. In addition to that, the main
advantage for user through UTE is that the manager of IaaS
has no privilege to interfere in Trusted Coordinator
Functionality within UTE. Accordingly, cloud computing
became an extra secure and more trustworthy by using these
all approaches.

Cloud-networking architecture is displayed as security. As
per the reason of scalable and movable virtual resources,
registered users can access network at various virtual
infrastructure in different time place [11]. The main thought of
this research paper is security parameters, requirement and
functionality, which is managing services by the service
provide to the User and virtual infrastructure provider. In the
near future, security architecture will be introduced in new
face of verification user and providing flexible control via
virtual resource in the cloud networking.

V. CONCLUSION

Cloud computing become a key research area due to its
benefit like dynamic scalability, flexibility, rapid elasticity and
seamless expansions. On the other hand due to integral
security issues the evolution became restricted. The most
vulnerable part of cloud computing is users data which is
stored in the cloud. User cannot use cloud as a conventional
method of storing the data. If cloud vendor provides enough
security than user, it can move from server based storage to
cloud base storage. The IaaS is the fundamental layer of cloud.
If IaaS become more secure than whole cloud will be secure.
In this report we discuss various methods that are proposed by different authors. The most appropriate method that our group finds is to apply cryptographic method to secure the IaaS. Because cryptography can apply in all the fields of computing like software, applications, services and hardware as well. Hence proposed methods can be securing the whole cloud by applying it on infrastructure as a Service layer.

REFERENCES


