Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu\(^{2+}\) Phosphor Particles

Keiji Komatsu, Hayato Maruyama, Ariyuki Kato, Atsushi Nakamura, Shigeo Ohshio, Hiroki Akasaka, Hidetoshi Saitoh

Abstract—Violet Sr–Al–O:Eu\(^{2+}\) phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu\(^{2+}\) phosphor particles was determined from various Sr–Al–O:Eu\(^{2+}\) phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl\(_2\)O\(_4\)Eu\(^{2+}\) emission phases were confirmed by their crystallite sizes and the activation energies for the 4F\(_5/2\)-2S\(_3/2\) transition of the Eu\(^{2+}\) ion. These results showed that the material identification for the violet Sr–Al–O:Eu\(^{2+}\) phosphor was accomplished by the low-temperature luminescence measurements.

Keywords—Low temperature luminescence spectroscopy, Material Identification, Strontium aluminates phosphor.

I. INTRODUCTION

MANY researchers are attracted to Sr–Al–O-related crystals for their functions as long-phosphorescence light-emitting phosphors, thermal-induced phosphors, and stress-induced phosphors [1]-[6]. In particular, Eu\(^{2+}\)-doped Sr–Al–O:Eu\(^{2+}\) phosphors have high chemical stabilities, high emission brightness, and long afterglow properties. The crystal structures and stoichiometries [7]. The electron configuration of the emission center, the Eu\(^{2+}\) ion, also depends on these parameters. The energy level of the 5d electron in the Eu\(^{2+}\) ion affects the crystal field strongly. Therefore, the energy level of (4f\(^5\)5d\(^1\)) depends on the strength of the crystal-field effects [8]. As a result, the Sr–Al–O:Eu\(^{2+}\) phosphors are known as one of the phosphor materials that are tunable from violet to green [8].

Synthesis of the 410-nm violet Sr–Al–O:Eu\(^{2+}\) phosphor using elemental diffusion from exogenous material has also been reported [9]. This method requires that sintering be performed under a reducing atmosphere, starting with Sr–Al–O:Eu powder with the molar ratio of 6.86:8.0:14 for Sr:Al:Eu complexed with ethylenediaminetetraacetic acid (EDTA). Metal oxide powder from metal-EDTA complex is suitable for phosphor materials design because of homogenous compositionally [10]-[11]. Advantages of EDTA route synthesis were confirmed by Y-B-C-O compounds film’s synthesis from EDTA complexes [12] The emission of the product was dependent on the degree of elemental Al diffusion from the alumina substrate, which was controlled by varying the sintering conditions. Furthermore, the synthesis of Sr–Al–O:Eu\(^{2+}\) phosphor particles using elemental Al diffusion was developed to fabricate particles with superior properties for commercial applications in paints, for example [13] Instead of a polycrystalline alumina plate, the 405 nm violet emission phase was found in a 1-μm-thick coating layer covering the Sr–Al–O:Eu\(^{2+}\) particles. These violet emission phases were formed in the alumina. Some Sr–Al–O crystalline phases were then formed on the surface area by elemental Al diffusion from the alumina. The seven Sr–Al–O crystalline phases— SrAl\(_2\)O\(_4\), SrAl\(_2\)O\(_19\), Sr\(_2\)Al\(_2\)O\(_{11}\), Sr\(_3\)Al\(_2\)O\(_6\), Sr\(_3\)Al\(_4\)O\(_{25}\), Sr\(_3\)Al\(_2\)O\(_{25}\), and Sr\(_2\)Al\(_2\)O\(_{19}\)—were contained. From a stand point of phosphor material design, it is important to improve its emission properties in order to determine the crystal structure and stoichiometries for the violet Sr–Al–O crystalline phase.

The emission behavior and properties such as emission wavelength and emission peak width of the Eu\(^{2+}\)-doped phosphor material are strongly affected by its surrounding temperature [14]-[17]. Emission processes at 300 K include the thermal deactivation process, whose effect can be reduced by decreasing the sample’s temperature to 300 K or lower. The thermal deactivation process originates from lattice vibrations in the crystal. For example, C\(_{10}\)S\(_{10}\)S phosphor shows a shorter emission wavelength with increasing temperature. This phenomenon is explained by a larger number of electrons located in the higher excited energy level of the Eu\(^{2+}\) ion that is associated with increasing temperature. Next, the phosphor material undergoes lattice expansion, forming a longer emission center–ligand distance (e.g., Eu\(^{2+}\)–S\(^2+\)) as the temperature increases. The electrostatic interaction in the crystal field at 300 K then becomes weaker than that at lower temperatures. In contrast, the number of electrons that are located in the higher excited energy level of Eu\(^{2+}\) ion tends to decrease at low temperatures, and the electrons in the crystal can become isolated and localized. The emission properties of phosphor materials are affected strongly by temperature because of phonon effects; they are also independent of the material composition of the phosphors themselves at low temperature. The minimum thermal energy required for an
electron to hop between levels in the crystal can be estimated by the Arrhenius equation [18], [19]. In Eu2+-doped phosphor material, the estimated thermal energy is related to transitions from the 1\ Strauss level (minimum excited energy level) to 4f5d1 level of the Eu2+ ion. Material identification of the Sr–Al–O:Eu2+ phosphors from the low-temperature luminescence properties is therefore possible based on transition rules for the Eu2+ ion compared to its properties at room temperature.

In this study, material identification was performed on the violet Sr–Al–O:Eu2+ phosphor particles synthesized using elemental Al diffusion. At room temperature, both SrAl\textsubscript{12}O\textsubscript{19}:Eu2+ and Sr\textsubscript{2}Al\textsubscript{12}O\textsubscript{25}:Eu2+ exhibit violet luminescence at 410 nm. Identification of the violet Sr–Al–O:Eu2+ phosphor particles was conducted through luminescence spectroscopy measurements at low temperature to determine the crystalline structure and emission properties at 85–300 K. The results were compared to the reported emission properties of Sr–Al–O:Eu2+ single crystals at 85–300K. In addition, the crystallite diameter size and activation energy of the Sr–Al–O:Eu2+ phosphor particles were estimated from X-ray diffraction (XRD) patterns and cathodoluminescence (CL) spectra to study the relationship between crystalline degrees and 4f5d–5S\textsubscript{7/2} transition efficiency.

II. EXPERIMENTAL METHOD

A. Materials

Fig. 1 shows a schematic diagram showing the preparation of a sample, including dispersion of alumina in the (Sr, Al, Eu)–EDTA solution made from Sr–EDTA solution, Eu–EDTA solution, and EDTA–Al–NH\textsubscript{4} crystals. Three EDTA complexes, Sr2+, Al3+, and Eu2+–EDTA, were prepared for the synthesis of Sr–Al–O:Eu2+ phosphor particles. A colorless Sr–EDTA aqueous solution was prepared by reacting SrCO\textsubscript{3}, EDTA•2H•2NH\textsubscript{4}, and purified water by stirring them together for 2 h at 100ºC. A pale pink Eu–EDTA aqueous solution was also prepared by reacting Eu\textsubscript{2}O\textsubscript{3}, EDTA•2H•2NH\textsubscript{4}, and purified water by stirring them together for 2 h at 100ºC.

B. Experiment

To produce the Sr–Al–O:Eu2+ phosphor particles, particulate alumina (average particle size: 1 μm; Brunauer–Emmett–Teller (BET) surface area: 5.0 m2/g) (A-43-M, Showa Denko K. K.) was dispersed in the Eu–EDTA solution and EDTA–Al–NH\textsubscript{4} crystals. Three EDTA complexes, Sr2+, Al3+, and Eu–EDTA, were prepared for the synthesis of Sr–Al–O:Eu2+ phosphor particles. A colorless Sr–EDTA aqueous solution was prepared by reacting SrCO\textsubscript{3}, EDTA•2H•2NH\textsubscript{4}, and purified water by stirring them together for 30 min at 80ºC. A pale pink Eu–EDTA aqueous solution was also prepared by reacting Eu\textsubscript{2}O\textsubscript{3}, EDTA•2H•2NH\textsubscript{4}, and purified water by stirring them together for 2 h at 100ºC.

B. EXPERIMENTAL METHOD

The sintering temperatures of the Sr–Al–O:Eu2+ phosphor particles were estimated from the Scherrer equation. The form factor, K, was constant at K = 0.9. The temperature dependence of the emission properties at 85–300 K was analyzed by cathodoluminescence (CL) microscopy (MonoCL3, Gatan Inc.). The accelerating voltage was 30 kV. The sample was mounted on the stage of the scanning electron microscope (SEM; JSM T300, JEOL) equipped with an external liquid-nitrogen delivery system for cooling. The temperature of the sample was controlled by a temperature controller (E5CK, Omron). Cathodoluminescence from the sample was passed through a built-in light-focusing system and then through an optical fiber (STU200D/10, Itami) coupled to a monochromator (Cornerstone 130, Oriel Instruments) and a photomultiplier (R928, Hamamatsu Photonics K. K.). The spectra were plotted after correcting the spectral sensitivity of the detection system [20]. The activation energy, Ea, for the Sr–Al–O:Eu2+ particles were calculated from the CL intensities (I) for each sample using the Arrhenius relationship, I = A • \text{exp}(-Ea/k • 1/T). Then, A is frequency factor, independent of the temperature, and k is the Boltzman constant. Using the relationship log(I) = -Ea/k • 1/T + logA, log(I) was then plotted against 1/T. The activation energies of the Sr–Al–O:Eu2+ phosphor particles were estimated from the gradients of these plots.

TABLE I

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sintering temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>1400</td>
</tr>
<tr>
<td>Sample 2</td>
<td>1450</td>
</tr>
<tr>
<td>Sample 3</td>
<td>1500</td>
</tr>
</tbody>
</table>

III. RESULTS AND DISCUSSION

XRD measurements were conducted to identify the crystal structure of the Sr–Al–O:Eu2+ phosphor particles obtained. Fig. 2 shows the XRD patterns of the Sr–Al–O:Eu2+ phosphor particles. The assignments of the XRD peaks are based on the International Centre for Diffraction Data (ICDD) data card. All Sr–Al–O:Eu2+ phosphor particles contained the Sr–Al–O crystalline phases Sr\textsubscript{4}Al\textsubscript{2}O\textsubscript{9}, Sr\textsubscript{3}Al\textsubscript{15}O\textsubscript{19}, Sr\textsubscript{3}Al\textsubscript{2}O\textsubscript{11}, Sr\textsubscript{3}Al\textsubscript{2}O\textsubscript{6}, SrAl\textsubscript{14}O\textsubscript{25}, Sr\textsubscript{7}Al\textsubscript{12}O\textsubscript{25}, and Sr\textsubscript{9}Al\textsubscript{6}O\textsubscript{18}; all Sr–Al–O:Eu2+ phosphor particles were also identified as having some diffusions patterns of Al\textsubscript{2}O\textsubscript{3}, which was used as an elemental diffusion source. These
results showed that the Sr–Al–O:Eu$^{2+}$ phosphor particles obtained in the study contained the seven types of Sr–Al–O:Eu$^{2+}$ crystalline phases and related materials, and these phases coexisted in the samples.

The average crystallite diameters of the Sr–Al–O:Eu$^{2+}$ phosphor particles were estimated by Scherrer’s equation from the XRD patterns at 2θ = 36.10º and 59.98º, which were assigned to (114) and (304), respectively, of the SrAl$\text{12}$$\text{O}_{19}$ crystal as well as (520) and (504), respectively, of the Sr$_7$Al$_{12}$O$_{25}$ crystal. The estimated crystallite diameter sizes, which are summarized in Table II, increased with increasing sintering temperature. As a result, the values obtained at the full width at half maximum (FWHM) were assumed to represent the degrees of lattice distortion in the Sr–Al–O:Eu$^{2+}$ phosphor, grain growth, and densification in the phosphor particles obtained by elemental Al diffusion [21], [22].

The PL spectra at 300 K of the Sr–Al–O:Eu$^{2+}$ phosphor particles are shown in Fig. 3. The excitation wavelength was constant at 269 nm. All samples showed a broad violet emission peak at 405 nm, which was assigned to the f–d transition of the Eu$^{2+}$ ion. The emission intensities at 405 nm increased with increasing sintering temperature. Luminescence of the Eu$^{2+}$-doped phosphor strongly depended on the environment of the Eu$^{2+}$ ion as an emission center because of its crystal-field effect. By increasing the sintering temperature, the crystal purity of the Sr–Al–O:Eu$^{2+}$ phosphor was improved, and the distribution of Eu$^{2+}$ ions in the crystal changed from nonuniform to uniform [23]-[24]. Both SrAl$_{12}$O$_{19}$:Eu$^{2+}$ and Sr$_7$Al$_{12}$O$_{25}$:Eu$^{2+}$ phosphors have been reported to show violet luminescence [9], [25]. Based on the ICDD assignments, these Sr–Al–O crystals were assumed to exist in the Sr–Al–O:Eu$^{2+}$ phosphor particles because the particles were a multi-phase of various Sr–Al–O crystalline phases resulting from elemental Al diffusion. The results of XRD and PL spectroscopy at 300 K showed that the Sr–Al–O:Eu$^{2+}$ phosphor particles were neither SrAl$_{12}$O$_{19}$:Eu$^{2+}$ nor Sr$_7$Al$_{12}$O$_{25}$:Eu$^{2+}$ phosphors.

Next, material identification by luminescence spectroscopy at low temperature was performed. Changes in the emission behavior of Eu$^{2+}$-doped phosphor at low temperature are related to transitions between energy levels of the Eu$^{2+}$ ions. The CL spectra of the Sr–Al–O:Eu$^{2+}$ phosphor particles at 85–300 K are shown in Figs. 4–6. The accelerating voltage was constant at 30 kV. All Sr–Al–O:Eu$^{2+}$ phosphor particles showed a broad emission peak at 398 nm at 300 K. By decreasing the temperature, the emission intensities at 398 nm were decreased. A new broad emission peak at 375 nm emerged at a lower temperature of 250 K, accompanied by increased intensity. This violet emission peak at 375 nm was assigned to the $^6P_{7/2}$–$^8S_{7/2}$ transition of SrAl$_{12}$O$_{19}$:Eu$^{2+}$. At temperatures below 200 K, the violet emission peak at around 325 nm was assumed to result from the F$^-$ center emission of α-Al$_2$O$_3$ [26], [27].

Katsumata et al. reported the temperature dependence of the SrAl$_{12}$O$_{19}$:Eu$^{2+}$ phosphor’s emission properties [28]. At 310 K, the emission peak at 404 nm of our CL spectra, which was assigned to the $^6P_{7/2}$–$^8S_{7/2}$ transition of SrAl$_{12}$O$_{19}$:Eu$^{2+}$, became stronger with increasing temperature. As the temperature increased, the intensity of the emission peak at 375 nm decreased, and the intensity at 325 nm increased. The emission intensity at 325 nm increased more strongly with increasing temperature than the intensity at 375 nm. This behavior was consistent with the temperature dependence of the SrAl$_{12}$O$_{19}$:Eu$^{2+}$ phosphor’s F$^-$ center emission [26], [27].

TABLE II

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Crystallite diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>58.7</td>
</tr>
<tr>
<td>Sample 2</td>
<td>68.5</td>
</tr>
<tr>
<td>Sample 3</td>
<td>109.7</td>
</tr>
</tbody>
</table>

Fig. 2 XRD profiles of Sr–Al–O:Eu$^{2+}$ phosphor particles, (a)Sample 1, (b) Sample 2 and (c) Sample 3.

Fig. 3 PL spectra of Sr–Al–O:Eu$^{2+}$ phosphor particles at 300 K, (a) Sample 1, (b) Sample 2 and (c) Sample 3.
dominant. Next, this dominant emission peak’s position changed from 404 nm to 371 nm at 275–100 K. Furthermore, at a lower temperature of 100 K, the 371 nm emission, which was assigned to the 6P7/2–8S7/2 transition of SrAl12O19:Eu2+, dominated; the emission at 404 nm was not observed. The 375-nm emission peak of the Sr–Al–O:Eu2+ phosphor particles showed behavior similar to that reported for the SrAl12O19:Eu2+ at low temperature. Hence, the composition of the Sr–Al–O:Eu2+ phosphor particles was determined to be SrAl12O19:Eu2+ by the low-temperature spectroscopy.

TABLE III

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Activation energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>0.037</td>
</tr>
<tr>
<td>Sample 2</td>
<td>0.030</td>
</tr>
<tr>
<td>Sample 3</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Activation energies of the Sr–Al–O:Eu2+ phosphor particles were estimated from the Arrhenius equation using the emission intensities at 398 nm obtained from each PL spectra. The activation energies of Sample 1–3 are listed in Table III and as follows: 0.037 eV for Sample 1; 0.030 eV for Sample 2; 0.020 eV for Sample 3. These values decreased with increasing sintering temperature. The variation in emission wavelength with temperature depends on the charge migration rate in a phosphor’s host material [29]. For the Sr–Al–O:Eu2+ phosphors, self-trapping holes in one AlO45- chain structure moved to the next AlO45- chain structure by hopping. Eventually, the self-trapping holes were trapped at the Eu2+ sites in the structures, releasing the absorbed energies as luminescence. At low temperatures, the localized electron–hole pair that was created by excitation of violet light was not isolated and did not recombine. The activation energies obtained from the emission intensities’ dependence on temperature corresponded to the heat energy required for holes to hop (versus the self-trapping holes in the crystal). This electron migration was closely related closely to the excited electron’s transition from the P5/2 level to the 4f5d level of the Eu2+ ion. Thus, the activation energies affected the emission efficiencies of the 4f5d–8S7/2 transitions [30], [31]. The relationship between the crystallite diameter sizes and activation energies is shown in Fig. 7. The activation energies decreased with increasing crystallite size. In the highly crystallized SrAl12O19, the frequency of electron migration became high. In SrO–Al2O3 phase diagrams, the SrAl12O19 crystal phase can be found in the region containing over 86 mol% Al2O3 [32]. Since the elemental Al diffusion was enhanced by increasing the sintering temperature, the formation of SrAl12O19 in the Sr–Al–O:Eu2+ phosphor particles was thus accelerated by elemental Al diffusion from the alumina particles. These results indicated that a violet SrAl12O19:Eu2+ phosphor with high crystal purity was obtained by elemental Al diffusion, and the phosphor showed high emission efficiencies for 4f5d–8S7/2 transitions, as confirmed by the values of the activation energies.
A violet Sr–Al–O:Eu$^{2+}$ phosphor was synthesized on particulate alumina from the reaction between Sr–Al–O:Eu powder and Al derived from the alumina. The violet Sr–Al–O:Eu$^{2+}$ phosphor, its emission behavior at 85–300 K under irradiation by a 30-kV accelerating voltage identified the particles as the SrAl$_2$O$_4$:Eu$^{2+}$ phosphor. The lower activation energy for the 4f5–8S$^7/2$ transition of the Eu$^{2+}$ ion was obtained by increasing the sintering temperature.

REFERENCES

H. Maruyama was received master degree at Nagaoka University of Technology. He graduated the Nagaoka University of Technology in 2009.

A. Kato was received doctoral degree at Kyoto University in 1998. He is an associate Professor in Nagaoka University of Technology. His research themes are optical properties of rare-earth compounds.

A. Nakamura was received doctoral degree at Nagaoka University of Technology. He is with the Chubu Chelest Co., Ltd. and he is also with the Nagaoka University of Technology as visiting associate professor. His major study filed is inorganic materials/physical properties.

S. Ohshio is a technical specialist at Nagaoka University of Technology. His major field studies are science education and inorganic materials/physical properties

H. Akasaka was with the Nagaoka University of Technology. He received doctoral degree at Tokyo Institute of Technology in 2007. He is an associate professor in Tokyo Institute of Technology. His major study filed is inorganic materials/physical properties.

H. Saitoh was received doctoral degree at Nagaoka University of Technology in 1990. He is a professor in Nagaoka University of Technology. His research themes are crystal growth of thin films, crystal growth of thin films, material design of superhard compound, material design of superhard compound, and opto ceramic materials, opto ceramic materials.