Factors That Affect the Effectiveness of Enterprise Architecture Implementation Methodology

Babak Darvish Rouhani, Mohd Naz’ri Mahrin, Fatemeh Nikpay, Pourya Nikfard, Maryam Khanian Najafabadi

Abstract—Enterprise Architecture (EA) is a strategy that is employed by enterprises in order to align their business and Information Technology (IT). EA is managed, developed, and maintained through Enterprise Architecture Implementation Methodology (EAIM). Effectiveness of EA implementation is the degree in which EA helps to achieve the collective goals of the organization. This paper analyzes the results of a survey that aims to explore the factors that affect the effectiveness of EAIM and specifically the relationship between factors and effectiveness of the output and functionality of EA project. The exploratory factor analysis highlights a specific set of five factors: alignment, adaptiveness, support, binding, and innovation. The regression analysis shows that there is a statistically significant and positive relationship between each of the five factors and the effectiveness of EAIM. Consistent with theory and practice, the most prominent factor for developing an effective EAIM is innovation. The findings contribute to the measuring the effectiveness of EA implementation project by providing an indication of the measurement implementation approaches which is used by the Enterprise Architects, and developing an effective EAIM.

Keywords—Enterprise Architecture, Enterprise Architecture Implementation Methodology, EA, Effectiveness, Factors, Implementation Methodology.

I. INTRODUCTION

ENTERPRISE Architecture (EA) is employed by enterprise for providing integrated environment in order to support the alignment of enterprise’s business and Information Technology (IT) [1], [2]. In EA, the framework represents the structure to model enterprise's business and IT entities. There are different models for various perspectives in EA Framework (EAF), each with different scope and activities [3]. The outputs of EAF are EA’s artefacts that consist of models, diagrams, documents and reports [4], [5]. Since EA artefacts are not sufficient for enterprises by their own, enterprises are looking to find a method to address their challenges on competiveness by implementing those artefacts [6]. In addition, enterprises implement the EA in order to find appropriate answers for their business's demands [7], [8].

EA Implementation Methodology (EAIM) can describe the structured approach in order to solve some or all of the problems related to EA implementation [9], [10]. EAIM covers all aspects of the EA lifecycle - the planning for enterprise understanding projects, the analysis of business requirements, the design of systems, the evolution of systems, and the ongoing enhancements of all of the above [6]. The methodology is both complete and concise, serving as a coherent guide for practitioner professionals. It allows paths and pieces of content to be selected and extracted for application on specific projects [11].

II. RELATED WORK

The effectiveness is determined by degree in which the outputs of EA implementation help the enterprise attain its intended goals [17]. If the intended goals of the enterprise regarding EA coincide with the individual goals of stakeholders, then EA effectiveness determines. Moreover, EA function effectiveness is: “The degree in which organizational objectives are attained through the outputs of the EA function”. Besides, effectiveness of EA may be objectively
measured by using the organizational performance data related to the implementation of EA decision making [18].

Current EA assessment approaches mostly focus on financial and efficiency of EA functions [29]. However, in order to understand the degree in which functions of EA implementation achieve the objectives that pursued with EA, the effectiveness of EA implementation play major role in contrast of efficiency or cost. In EA implementation, the main concerns are in the achievement of EA functions. Obtaining the intended results by using the EA implementation practices are the key concern on the effectiveness of EA implementation. Reference [18] mentioned numbers of qualitative objectives in order to measure the effectiveness of EA in terms of objectives. Reference [17] considered two dimensions agility and alignment as the EA implementation measurement model.

Reference [18] summarized several author’s perspectives on how to measure the effectiveness of EA (in terms of objectives or metrics). Based on the three measurement dimensions and corresponding benefits of [30], [18] formulated 12 qualitative objectives, with 58 corresponding indicators, to be attained by any EA framework and architecture development process. 11 of 12 objectives (47 of 58 indicators) appeared to be positively influenced by the EA framework (EAF) and development process.

Reference [17] considered two dimensions agility and alignment as the effectiveness of EA implementation measurement model. According to [17] in order to measure the effectiveness of EA implementation two dimensions including: agility with six indicators (external monitoring, speed, flexibility, quality and customization, and initiation of change) and alignment with six indicators (internal monitoring, communication and understanding, governance, partnership, readiness of change, and conformance and integration) should be considered. However, this measures the effectiveness of EA implementation in order to obtain the stakeholders satisfaction and does not support all quality attributes of the effectiveness of EA implementation. Factors that mentioned by [18] are emphasized on the EAF, and [17] focused more on implementation, however, our research focuses on identifying the factors that have positive effect on the effectiveness of EAIM, which related to development, management, and maintenance processes.

III. RESEARCH DESIGN

We conducted a Systematic Literature Review (SLR) in accordance with Kitchenham’s (2007) guidelines and procedures in order to identify the factors that affect the effectiveness of EAIM [19]. 46 primary studies have selected and five key factors identified. Table I describes the identified factors.

In this research the survey has been selected as research method in order to achieve intended research objective. In this regards, the questionnaire is employed as tool.

A structured, self-administered questionnaire was created and made available on the World Wide Web. The questionnaire was designed to be short (21 questions) and easy to complete with questions phrased in closed-ended format. The seven point Likert scale answers have been selected for each question, including: strongly agree, agree, somewhat agree, neither agree nor disagree, somewhat disagree, disagree, and strongly disagree. According to [22] the sample size among thirty and five hundred respondents is appropriate for conducting a survey. The following criteria have been set for survey population.

- Those who have practical experience on EA implementation with at least two years experiences
- Those who work as an Business Architect, Enterprise Architect, IT Manager in EA project with at least two years experiences
- Those who published related paper on factors, which affect the effectiveness of EA implementation

The followings null hypotheses and alternative hypotheses have been defined for each independent factor:

H0= There is no relationship between adaptiveness/ alignment/ support/ binding/ innovation and effectiveness.
H1a= There is meaningful relationship between adaptiveness/ alignment/ support/ binding/ innovation and effectiveness.

In order to evaluate the factors we used factor analysis to understand the underlying structure. In addition, this research used the Pearson correlation in order to identify the strength of the relationship between factors and effectiveness. Beside in order to have appropriate foundation for evaluating the factors this research used multiple regressions to explore the predictive ability of identified factors on effectiveness of EAIM. It also allows us to compare the predictive ability of particular factors and find the best factors to predict the effectiveness.

IV. RESULTS

This section represents the results of evaluating the identified factors

A. Descriptive Statistics

This section represents the descriptive analysis based on general questions of designed questionnaire, which are related to respondent characteristics. Table II shows demographic profile of survey’s respondents.
According to Table II, 31 respondents (36%) have practical knowledge, in contrast 29 (33.7%) of respondents passing relevant courses and 21 of respondents study related books. Moreover, majority of respondent have PhD degree which is 40 (46.5%) while 3 (3.5%) of respondents have Bachelor degrees. Most of respondent Position are Enterprise Architects with 56 (65.1%), meanwhile 8 (9.3%) of respondents are IT managers and IT consultants, business architect, researcher, and faculty member response 4 (4.7%), 3 (3.5%), 3 (3.5%), and 12 (14%) respectively.

Furthermore, Most of respondents have 6-10 years' experiences in EA with 38 (44.2%) and 33 respondents (38.4%) have 11-20 years' experiences, while 6 respondents (7%) have above 20 years' experience in EA projects. Descriptive statistics is useful and suitable for checking respondent (N Valid), missing value (N missing), the Minimum and Maximum, Mean (average) for each variables and Std. Deviation (Standard Deviation) for each of them.

Table III shows descriptive table of Items for each factors and the effectiveness of EA Implementation.
B. Data Analysis

This section illustrates factor analysis and reliability of main questionnaire. Moreover, the correlation and regression is represented in order to demonstrate correlation of each factor to dependent variable.

1. Factor Analysis

Factor analysis is a statistical method to classify the observations in smaller groups; it is one of the most common methods in researches. It was introduced about 100 years ago by psychologist Charles Spearman to detect hidden characteristics and statistical observations and categories; moreover, this analysis is used for data reduction and structure detection [23].

As a whole, before doing factor analysis, we should ensure adequacy of sample; that current data is suitable for factor analysis. In this regard, KMO & Bartlett test is used, KMO measure should be greater than 0.7, otherwise, factor analysis is not valid for sample. Moreover, Bartlett test should be significant, in other words, less than significant level 0.05.

As shown in Table IV, KMO measure is 0.706 (> 0.7) so the current data set is suitable for factor analysis. Also, Bartlett test sig. = 0.000 (< 0.05) means variables have enough correlation to provide reasonable basis for factor analysis [28].

Principal axis factor analysis was conducted on all 21 items of effectiveness factors in questionnaire.

Table V shows factor loading for each of the 21 items. These 21 items related to the five variables used in this research. According to [24] only factor loading greater and equal 0.5 (≥ 0.5) are considered. Each of items should locate in one column separately without considering the sign.

The first four item's high loadings located in first factor, which was "Binding", it means that B1, B2, B3, and B4 are cluster in first group which define by high loading. Variables, which measure "Adaptiveness" is in column 3, variables for "Innovation" are in column 4, variables for "Alignment" are in column 1, variables for "Support" are in column 6, and variables for measuring "Effectiveness" are in column 5.

<table>
<thead>
<tr>
<th>Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>-0.234</td>
<td>0.676</td>
<td>0.131</td>
<td>0.420</td>
<td>0.184</td>
<td>0.142</td>
</tr>
<tr>
<td>B2</td>
<td>-0.065</td>
<td>0.801</td>
<td>0.247</td>
<td>0.192</td>
<td>-0.065</td>
<td>0.264</td>
</tr>
<tr>
<td>B3</td>
<td>0.155</td>
<td>0.826</td>
<td>0.232</td>
<td>-0.084</td>
<td>0.017</td>
<td>0.050</td>
</tr>
<tr>
<td>B4</td>
<td>0.240</td>
<td>0.838</td>
<td>0.029</td>
<td>0.115</td>
<td>-0.028</td>
<td>0.138</td>
</tr>
<tr>
<td>A1</td>
<td>-0.060</td>
<td>0.180</td>
<td>0.783</td>
<td>0.286</td>
<td>0.078</td>
<td>-0.044</td>
</tr>
<tr>
<td>A2</td>
<td>0.135</td>
<td>0.152</td>
<td>0.852</td>
<td>0.105</td>
<td>0.200</td>
<td>0.032</td>
</tr>
<tr>
<td>A3</td>
<td>0.262</td>
<td>0.247</td>
<td>0.808</td>
<td>0.066</td>
<td>0.223</td>
<td>0.024</td>
</tr>
<tr>
<td>A4</td>
<td>0.233</td>
<td>0.070</td>
<td>0.127</td>
<td>0.534</td>
<td>0.152</td>
<td>0.424</td>
</tr>
<tr>
<td>B5</td>
<td>0.158</td>
<td>0.049</td>
<td>0.452</td>
<td>0.359</td>
<td>0.117</td>
<td>0.361</td>
</tr>
<tr>
<td>B6</td>
<td>0.136</td>
<td>0.094</td>
<td>0.156</td>
<td>0.831</td>
<td>0.134</td>
<td>0.253</td>
</tr>
<tr>
<td>B7</td>
<td>0.206</td>
<td>0.173</td>
<td>0.221</td>
<td>0.788</td>
<td>-0.021</td>
<td>-0.123</td>
</tr>
<tr>
<td>A11</td>
<td>0.061</td>
<td>0.084</td>
<td>-2.237</td>
<td>0.394</td>
<td>-0.055</td>
<td>-0.177</td>
</tr>
<tr>
<td>A12</td>
<td>0.600</td>
<td>0.091</td>
<td>0.217</td>
<td>0.014</td>
<td>-3.080</td>
<td>0.244</td>
</tr>
<tr>
<td>A13</td>
<td>0.655</td>
<td>0.037</td>
<td>0.303</td>
<td>-0.080</td>
<td>-1.313</td>
<td>0.488</td>
</tr>
<tr>
<td>A14</td>
<td>0.839</td>
<td>0.121</td>
<td>0.021</td>
<td>0.211</td>
<td>-0.015</td>
<td>0.227</td>
</tr>
<tr>
<td>A15</td>
<td>0.763</td>
<td>0.005</td>
<td>0.272</td>
<td>0.035</td>
<td>0.012</td>
<td>0.090</td>
</tr>
<tr>
<td>S1</td>
<td>0.099</td>
<td>0.209</td>
<td>-0.013</td>
<td>0.074</td>
<td>0.092</td>
<td>0.847</td>
</tr>
<tr>
<td>S2</td>
<td>0.240</td>
<td>0.256</td>
<td>-0.030</td>
<td>0.010</td>
<td>-0.177</td>
<td>0.823</td>
</tr>
<tr>
<td>Effectiveness1</td>
<td>-0.085</td>
<td>-0.034</td>
<td>0.138</td>
<td>0.011</td>
<td>0.901</td>
<td>0.050</td>
</tr>
<tr>
<td>Effectiveness2</td>
<td>-0.080</td>
<td>0.003</td>
<td>0.113</td>
<td>0.056</td>
<td>0.933</td>
<td>-0.036</td>
</tr>
<tr>
<td>Effectiveness3</td>
<td>-1.090</td>
<td>1.135</td>
<td>0.188</td>
<td>0.464</td>
<td>0.557</td>
<td>0.087</td>
</tr>
</tbody>
</table>

B= Binding; A= Adaptiveness, I= Innovation, AL= Alignment; S= Support; Effectiveness
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 8 iterations.

Based on factor analysis all variables of one group should be in one factor and for each variable we should select high loading from other reminder factors, totally factor analysis group variables with similar characteristics together. Factor loading of "I2" in column 4 is not desirable due to its low loading in contrast to other indicators of Innovation so it can be omitted from other analysis

2. Reliability

Reliability is an instrument to determine the stability of the results of the tests [25]. There are various methods to measure reliability. In this research, "Cronbach's Alpha" was used to test reliability. It is usually used to measure internal consistency, and ranges between 0 and 1; if α is close to 1, it means it is reliable [26] but as a whole this measurement should be greater than 0.7 for being reliable [28].
Table VI shows all Cranach's alpha measurement for the entire factor's group are above 0.7 which is an acceptable level and have high reliability for this research which states that sufficient internal consistencies have been judged for the reliable measurement.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Cronbach's Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding</td>
<td>.848</td>
</tr>
<tr>
<td>Adaptiveness</td>
<td>.884</td>
</tr>
<tr>
<td>Innovation</td>
<td>.746</td>
</tr>
<tr>
<td>Alignment</td>
<td>.846</td>
</tr>
<tr>
<td>Support</td>
<td>.865</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>.816</td>
</tr>
</tbody>
</table>

3. Correlation

In order to investigate the relationship between the factors and effectiveness of EA implementation, the correlation technique is employed. To evaluate this relationship, Pearson correlation statistical technique was used by means of SPSS 19.0. Moreover, in order to determine the strength of the relationship, interpretation was done based on the Cohen structure [27]. Table VII shows the correlation between independents and depend factors

As shown in Table VII, there is a strong correlation between the effectiveness of EA implementation as dependent variable and binding, adaptiveness, innovation, alignment, and support as independent variables. Based on the correlation statistical test, "Pearson correlation" and Cohen (1998) for binding \(r = 0.565 \) and p-value=0 (<0.05), these measurements indicate that there is a positive and strong relationship between "Binding" and effectiveness of EA implementation.

According to Table VII, the Pearson correlation for MA (Adaptiveness) is \(r = 0.577 \) and p-value=0 (<0.05), (H0 rejected) these measurements indicated that there is a positive relationship between "Adaptiveness" and effectiveness of EA implementation and this relationship is in significance level.

According to Table VII, the Pearson correlation for MI (Innovation) is 0.568 and p-value=0 (<0.05), (H0 rejected) these measurement indicated that there is a positive and strong relationship between "Innovation" and effectiveness of EA implementation and this relationship is in significance level.

According to Table VII, the Pearson correlation for MAL (Alignment) is 0.537 and p-value=0 (<0.05), (H0 rejected) this measurement indicated that there is a positive relationship between "Alignment" and effectiveness of EA implementation and this relationship is in significance level.

According to Table VII, the Pearson correlation for MS (Support) is 0.504 and p-value=0 (<0.05), (H0 rejected) these measurement indicated that there is a positive and strong relationship between "Support" and effectiveness of EA implementation and these relationship is in significance level.

Consequently, all identified factors based on the Pearson correlation analysis have significant relationships between independent variables and dependent variables, so all the H0 hypotheses are rejected in favor of H1.

4. Regression

Regression analysis provides the opportunity for researchers to predict the changes of dependent variable from independent variables and also identify contributions of each independent variable in explaining the dependent variable [27], for multiple regression, we use following equation:

\[
Y = b_0 + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 + b_5X_5
\] (1)

These \(b_0, b_1, b_2, b_3, b_4, b_5 \) are Standardized Regression Coefficients (Beta). In previous section the correlation between dependent variable and independent variables is investigated and there is relationship between them, so it is possible to use regression analysis. Table VIII shows number **. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

NOTE: ME: Effectiveness, MB: Binding, MA: Adaptiveness, MI: Innovation, MAL: Alignment, MS: Support
of models, entered and removed variable. Based on Table VIII, five independent variables entered and there is not any removed variable in this model. Now after entering all independent variables to model, following output achieved.

<table>
<thead>
<tr>
<th>TABLE VIII</th>
<th>VARIABLES ENTERED/REMOVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Variables Entered</td>
</tr>
<tr>
<td>1</td>
<td>MS, MI, MAL, MB, MA</td>
</tr>
</tbody>
</table>

Table IX shows final model in which all independent variable are entered, R-square indicates that how much variance is there among the dependent variable (Effectiveness of EA implementation) which is explained by this model that includes all 5 independent variable as well.

<table>
<thead>
<tr>
<th>TABLE IX</th>
<th>MODEL SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>R</td>
</tr>
<tr>
<td>1</td>
<td>.793</td>
</tr>
</tbody>
</table>

R-Square=0.628, it means that 63% of the effectiveness of EA implementation changes can be interpreted when all five factors used, in other words mentioned independent variables explain 63% of the effectiveness of EA implementation.

Table X shows that whether the regression model is suitable or not, in other words, whether the independent variables can explain dependent variable changes or not.

<table>
<thead>
<tr>
<th>TABLE X</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Sum of Squares</td>
</tr>
<tr>
<td>Regression</td>
<td>63.255</td>
</tr>
<tr>
<td>Residual</td>
<td>37.434</td>
</tr>
<tr>
<td>Total</td>
<td>100.689</td>
</tr>
</tbody>
</table>

According to Table X measure of p-value=0 (<0.05) indicate that combination of Binding, Adaptiveness, Innovation, Alignment, and Support significantly predict dependent variable (Effectiveness of EA implementation).

C. Effectiveness of EA Implementation

According to presented data analysis the independent variables including Binding (B), Innovation (I), Adaptiveness (A), Alignment (AL) and Support (S) have significant and positive relationship with the effectiveness of EA implementation as dependent variable. Thus all identified factors were significant contribute to the effectiveness of EA implementation at P<0.05. The effectiveness of EA implementation in this research was predicted by Binding (β=0.252), Adaptiveness (β=0.221), Innovation (β=0.299), Alignment (β=0.195) and Support (β=0.168) and these variables together explain 63% of variance of EA implementation (R2=0.628).

V. DISCUSSION AND LIMITATION

Although there are some researches in the literature about the factors of the effectiveness of EA as mentioned in Section II, the main feature of this research is on considering the factors that affect the effectiveness of EAIM. In this regards, binding, adaptiveness, innovation, alignment, and support are the factors that this research evaluated and they are related to development, management, and maintenance processes of EAIM.

Innovation is the factor, which has the highest influence on the effectiveness of EAIM. Innovation refers to continuous innovation in order to enhance enterprise’s business, processes, and activities; it also contains four indicators including: continuous improvement, appropriate governance mechanisms, flexibility, and agility. Innovation concerns on providing better environment for EA implementation by considering the appropriate governance, continuous improvement, flexibility and agility.

Since, today there is lack of effective EAIM [14], considering the identified factors could provide appropriate foundations for developing the effective EAIM. There are some limitations on this study including: 1) the sampling of the survey is limited; however the respondents were expert; 2) the implementation of the identified factors in real project could provide more information rather than statistical analysis..

VI. CONCLUSION

This paper analyzes the results of a survey that aims to explore the factors of the effectiveness of EAIM and specifically the relationship between factors and effectiveness of the output and functionality of EA project.

As a result, this research contributes to the generic literature on factors in Enterprise Architecture. It highlights a specific set of five factors for effectiveness of EAIM: alignment, adaptiveness, support, binding, and innovation. The research then shows that there is a statistically significant and positive relationship between each of the five factors and effectiveness of EAIM. Second, it emphasizes the importance of innovation on the effectiveness of EAIM. Finally, the following benefits are achieved based on this research:

- Provide an indication of the measurement implementation approaches being used by the Enterprise Architects
- Point to behaviours that are preventing the effective use of EAIM —thereby understanding the importance of the factors
- Provide an indication of how well measurement practices are being transitioned into use by the Enterprise Architects
- Provide an effective instrument for measuring the effectiveness of EAIM.

ACKNOWLEDGMENT

The authors would like thank to Dr. Roslina Binti Ibrahim and Dr. Rasmah Che Mohd Yusoff for guidance and support on this research.
REFERENCES

Babak Darvish Rouhani received his MSc in Software engineering from the Payame Noor University, Tehran-Iran in 2008. He is PhD candidate at Universiti Teknologi Malaysia in software engineering Darvish Rouhani research interests include Software Engineering, Enterprise Architecture, Agent-Oriented Architecture, and Agile Architecture.