Preconditioned Generalized Accelerated Overrelaxation Methods for Solving Certain Nonsingular Linear System

Deyu Sun, Guangbin Wang

Abstract—In this paper, we present preconditioned generalized accelerated overrelaxation (GAOR) methods for solving certain nonsingular linear system. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GAOR methods converge faster than the GAOR method whenever the GAOR method is convergent. Finally, we give two numerical examples to confirm our theoretical results.

Keywords—Preconditioned, GAOR method, linear system, convergence, comparison.

I INTRODUCTION

SOMETIMES, one has to solve a nonsingular linear system

\[Ay = f, \]

where

\[A = \begin{bmatrix} I - B & H \\ K & I - C \end{bmatrix}. \]

Here \(B \) and \(C \) are square nonsingular diagonal matrices of order \(n_1 \) and \(n_2 \), respectively, \(H \in \mathbb{R}^{n_1 \times n_2} \) and \(K \in \mathbb{R}^{n_2 \times n_1} \).

Yuan proposed a generalized SOR (GSOR) method to solve linear system (1) in [1]; afterwards, Yuan and Jin [2] established a generalized AOR (GAOR) method to solve linear system (1). In [3]-[5], authors studied the convergence of the GAOR method for solving the linear system (1). In [3], authors studied the convergence of the GAOR method when the coefficient matrices are consistently ordered matrices and gave the regions of convergence. In [4], authors studied the convergence of the GAOR method for diagonally dominant coefficient matrices and gave the regions of convergence. In [5], authors studied the convergence of GAOR method for strictly doubly diagonally dominant coefficient matrices and gave the regions of convergence.

In order to solve the linear system (1) using the GAOR method, we split \(H \) as

\[H = B + K. \]

Then, for \(\omega \neq 0 \), one GAOR method can be defined by

\[y^{(k+1)} = L_{r,\omega} y^{(k)} + \omega g, k = 0, 1, 2, \ldots, \]

where

\[L_{r,\omega} = \left(I - \alpha K \right) \left(1 - \omega I + \alpha r \right) \left(0 \ 0 \right) \left(B - H \right) \left(0 \ C \right). \]

In order to decrease the spectral radius of \(L_{r,\omega} \), an effective method is to precondition the linear system (1), namely,

\[PA = \begin{bmatrix} I - B' & H' \\ K' & I - C' \end{bmatrix} \]

then the preconditioned GAOR method can be defined by

\[y^{(k+1)} = L_{r,\omega}^* y^{(k)} + \omega g^*, k = 0, 1, 2, \ldots, \]

where

\[L_{r,\omega}^* = \begin{bmatrix} (1 - \omega I + \alpha B') - \alpha H' \\ \alpha (1 - r) K' - \alpha r K B' \end{bmatrix} \begin{bmatrix} 1 - \omega I + \alpha C' + \alpha K H' \end{bmatrix}. \]

This paper is organized as follows. In Section II, we propose new preconditioners and give the comparison theorems between the preconditioned and original methods. These results show that the preconditioned GAOR methods converge faster than the GAOR method whenever the GAOR method is convergent. In Section III, we give two examples to confirm our theoretical results.

We need the following definition:
Definition 1: Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$. We say $A > B$ if $a_{ij} > b_{ij}$ for all $i, j = 1, 2, \ldots, n$. We say $A \geq B$ if $a_{ij} \geq b_{ij}$ for all $i, j = 1, 2, \ldots, n$.

In this paper, $\rho(A)$ denotes the spectral radius of a square matrix.

Lemma 1 [6], [7]: Let $A \in \mathbb{R}^{n \times n}$ be nonnegative and irreducible. Then
(i) A has a positive real eigenvalue equal to its spectral radius $\rho(A)$;
(ii) for $\rho(A)$, there corresponds an eigenvector $x > 0$;
(iii) if $0 \neq \alpha x \preceq Ax \preceq \beta x$, $\alpha \neq \alpha x$, $Ax \preceq \beta x$ for some nonnegative vector x, then $\alpha < \rho(A) < \beta$ and x is a positive vector.

II COMPARISON RESULTS

Let $A \in \mathbb{R}^{n \times n}$. We denote by $A \geq 0$ a nonnegative matrix, $|A|$ the absolute value of matrix A, $\rho(A)$ the spectral radius of A, and $< A>$ the comparison matrix of A.

In [8], [9], authors presented several kinds of preconditioners for preconditioned GAOR method to solve systems of linear equations. They showed that the convergence rate of the preconditioned modified AOR methods is better than that of the original method, whenever the original method is convergent.

In this paper, we consider the preconditioned linear system

$$ (I + \tilde{S})Ay = (I + \tilde{S})f, $$

with

$$ \tilde{S} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}, $$

S is a $n_2 \times n_1$ matrix. We take S as follows:

$$ S_1 = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \quad S_2 = \begin{pmatrix} -K_{11} & 0 & \cdots & 0 \\ -K_{21} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -K_{n1} & 0 & \cdots & 0 \end{pmatrix}, $$

and let S_3 as

$$ S_3 = \begin{pmatrix} -K_{11} & 0 & \cdots & 0 \\ 0 & -K_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -K_{n,n} \end{pmatrix}, $$

or

Then the preconditioned GAOR methods for solving (3) are defined as follows:

$$ y^{(k+1)} = L_{m}^{(k)} y^{(k)} + \omega \tilde{g}, k = 0, 1, 2, \ldots, $$

where for $i = 1, 2, 3$,

$$ L_{m}^{(k)} = \begin{bmatrix} I & 0 \\ r(K + S_{i} (I-B)) & I \end{bmatrix} \begin{bmatrix} 0 & 0 & -I \\ -B & 0 & C-SH \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}, $$

are iteration matrices and

$$ \tilde{g} = \begin{pmatrix} I \\ -r(K + S_{i} (I-B)) \end{pmatrix}, \quad \tilde{f}. $$

Now, we consider new preconditioners P_i^*

$$ P_i^* = \begin{pmatrix} I & V_i \\ S_i & I \end{pmatrix}, i = 1, 2, 3, $$

where S_i are defined as above, and V_i are defined as:

$$ V_i = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \quad V_i = \begin{pmatrix} -H_{11} & 0 & \cdots & 0 \\ -H_{21} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -H_{n1} & 0 & \cdots & 0 \end{pmatrix}, $$

and let V_{3i} as

$$ V_{3i} = \begin{pmatrix} -H_{11} & 0 & \cdots & 0 \\ 0 & -H_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -H_{n,n} \end{pmatrix}. $$
Let

$$H + V_3(I - C) = \begin{pmatrix} H_{11} & H_{12} & \cdots & H_{1n} \\ H_{21} & H_{22} & \cdots & H_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ H_{m,1} & H_{m,2} & \cdots & H_{mn} \end{pmatrix}, \quad (n_2 = n_1)$$

and

$$K + S_3(I - B) = \begin{pmatrix} K_{11} & K_{12} & \cdots & K_{1n} \\ K_{21} & K_{22} & \cdots & K_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ K_{n,1} & K_{n,2} & \cdots & K_{nn} \end{pmatrix}, \quad (n_2 > n_1)$$

Then the preconditioned GAOR methods for solving

$$P^*_r A y = P^*_r f$$

are defined as follows

$$y^{(i+1)} = L_{r,\omega}^{-1}(y^{(i)} + \omega \tilde{g}^*), k = 0, 1, 2, \cdots,$$

where

$$L_{r,\omega}^{(i)} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}^{-1} (1 - \omega) I + \omega \left(-r(K + S_3(I - B)) \right),$$

and

$$\tilde{g}_r = \begin{pmatrix} 1 \\ 0 \end{pmatrix}^T.$$

Theorem 1: Let

$$L_{r,\omega}, L_{r,\omega}^{(i)}$$

be the iteration matrices associated of the GAOR and preconditioned GAOR methods,
respectively. If the matrix A is irreducible with $K \geq 0$, $H \geq 0, I-B \geq 0, I-C \geq 0, 0 < \omega \leq 1, 0 \leq r < 1$, $\alpha > 1-B_1, \beta > 1-C_1$, then either

$$\rho(L_{\omega}^{(1)}) < \rho(L_{\omega}) < 1$$

or

$$\rho(L_{\omega}^{(1)}) > \rho(L_{\omega}) > 1.$$

Proof: By assumptions, it is easy to prove that both $L_{\omega}^{(1)}$ and L_{ω} are irreducible and non-negative. By Lemma 1, there is a positive vector x such that

$$L_{\omega}x = \lambda x,$$

where $\lambda = \rho(L_{\omega})$.

Then

$$(1-\omega)I + (\omega - r) \begin{bmatrix} 0 & 0 \\ -K & 0 \end{bmatrix} + \omega \begin{bmatrix} B & -H \\ 0 & C \end{bmatrix} = \lambda \begin{bmatrix} I & 0 \\ rK & 1 \end{bmatrix}.$$

or

$$(1-\omega)I - \omega \begin{bmatrix} B & -H \\ 0 & C \end{bmatrix} = \lambda \begin{bmatrix} I & 0 \\ rK & 1 \end{bmatrix}.$$

By substituting the above equation into the following formula

$$L_{\omega}^{(1)}x - \lambda x = \begin{bmatrix} I & 0 \\ rK & 1 \end{bmatrix}L_{\omega}(1-\omega)I + (\omega - r) \begin{bmatrix} 0 & 0 \\ -K & 0 \end{bmatrix} + \omega \begin{bmatrix} B & -H \\ 0 & C \end{bmatrix}x - \lambda x$$

or

$$L_{\omega}^{(1)}x - \lambda x = \begin{bmatrix} I & 0 \\ rK & 1 \end{bmatrix}L_{\omega}(1-\omega)I + (\omega - r) \begin{bmatrix} 0 & 0 \\ -K & 0 \end{bmatrix} + \omega \begin{bmatrix} B & -H \\ 0 & C \end{bmatrix}x - \lambda x.$$

So we have

$$L_{\omega}^{(1)}x - \lambda x = \begin{bmatrix} I & 0 \\ rK & 1 \end{bmatrix}L_{\omega}(1-\omega)I + (\omega - r) \begin{bmatrix} 0 & 0 \\ -K & 0 \end{bmatrix} + \omega \begin{bmatrix} B & -H \\ 0 & C \end{bmatrix}x - \lambda x.$$

By assumptions, we know that

$$-r(K+S(I-B)) < 0, rV_IK < 0, V_I < 0, S_I < 0, -rS_I(I-B) < 0.$$

So

$$\begin{bmatrix} I & 0 \\ rK & 1 \end{bmatrix}L_{\omega}^{(1)}x - \lambda x = \begin{bmatrix} I & 0 \\ rK & 1 \end{bmatrix}L_{\omega}(1-\omega)I + (\omega - r) \begin{bmatrix} 0 & 0 \\ -K & 0 \end{bmatrix} + \omega \begin{bmatrix} B & -H \\ 0 & C \end{bmatrix}x - \lambda x.$$

By the analogous proof of Theorem 1, we can prove the following two theorems.

Theorem 2 Let $L_{\omega}, L_{\omega}^{(2)}$ be the iteration matrices associated of the GAOR and preconditioned GAOR methods, respectively. If the matrix A is irreducible with $I-B \geq 0, I-C \geq 0, K \geq 0, H \geq 0, 0 < \omega \leq 1, 0 \leq r < 1$, $\alpha > 1-B_1$, then either

$$\rho(L_{\omega}^{(2)}) < \rho(L_{\omega}) < 1$$

or

$$\rho(L_{\omega}^{(2)}) > \rho(L_{\omega}) > 1.$$

Corollary 1: Let $L_{\omega}, L_{\omega}^{(1)}$ be the iteration matrices associated of the GAOR and preconditioned GAOR methods, respectively. If the matrix A is irreducible with $I-B \geq 0, I-C \geq 0, K \geq 0, H \geq 0, 0 < \omega \leq 1, 0 \leq r < 1$, $\alpha > 1-B_1$, then either

$$\rho(L_{\omega}^{(1)}) < \rho(L_{\omega}) < 1$$

or

$$\rho(L_{\omega}^{(1)}) > \rho(L_{\omega}) > 1.$$

By the analogous proof of Theorem 1, we can prove the following two theorems.
Theorem 3: Let $L_{r,\omega}$, $L_{r,\omega}^{(j)}$ be the iteration matrices associated of the GAOR and preconditioned GAOR methods, respectively. If the matrix A is irreducible with $I - B \geq 0, I - C \geq 0, K \geq 0, H \geq 0, 0 < \omega \leq 1, 0 \leq r < 1$, then either

$$\rho \left(L_{r,\omega}^{(j)} \right) < \rho \left(L_{r,\omega} \right) < 1\ or\ \rho \left(L_{r,\omega}^{(j)} \right) > \rho \left(L_{r,\omega} \right) > 1.$$

Corollary 3 Let $L_{r,\omega}$, $L_{r,\omega}^{(j)}$ be the iteration matrices associated of the GAOR and preconditioned GAOR methods, respectively. If the matrix A is irreducible with $I - B \geq 0, I - C \geq 0, K \geq 0, H \geq 0, 0 < \omega \leq 1, 0 \leq r < 1$, then either

$$\rho \left(L_{r,\omega}^{(j)} \right) < \rho \left(L_{r,\omega} \right) < 1\ or\ \rho \left(L_{r,\omega}^{(j)} \right) > \rho \left(L_{r,\omega} \right) > 1.$$

Theorem 4: Under the assumptions of Theorem 1, then either

$$\rho \left(L_{r,\omega}^{(j)} \right) < \rho \left(L_{r,\omega} \right) < 1, \ if\ \rho \left(L_{r,\omega}^{(j)} \right) < 1$$

$$\rho \left(L_{r,\omega}^{(j)} \right) > \rho \left(L_{r,\omega} \right) > 1, \ if\ \rho \left(L_{r,\omega}^{(j)} \right) > 1.$$

Proof: By the proof of Theorem 1, we know that

$$L_{r,\omega}^{(j)} x = \lambda x = \left(I - (K + S(I - B)) \right) \left(I - (K + S(I - B)) \right)^{-1} x.$$

$$= (\lambda - I) \left(I - (K + S(I - B)) \right) \left(I - (K + S(I - B)) \right)^{-1} x.$$

$$= (\lambda - I) \left(I - (K + S(I - B)) \right) \left(I - (K + S(I - B)) \right)^{-1} x.$$

$$= (\lambda - I) \left(I - (K + S(I - B)) \right) \left(I - (K + S(I - B)) \right)^{-1} x.$$

Where $\lambda = \rho \left(L_{r,\omega} \right).$ So

$$L_{r,\omega}^{(j)} x - L_{r,\omega}^{(j)} x = (L_{r,\omega}^{(j)} x - \lambda x) = (\lambda - I) \left(I - (K + S(I - B)) \right) \left(I - (K + S(I - B)) \right)^{-1} x.$$

From the assumptions of Theorem 1, we know that

$$-r(K + S(I - B)) < 0, rV_i K < 0, V_i < 0.$$

So

$$\rho \left(L_{r,\omega}^{(j)} \right) < \rho \left(L_{r,\omega} \right) < 1\ or\ \rho \left(L_{r,\omega}^{(j)} \right) > \rho \left(L_{r,\omega} \right) > 1.$$

If $\lambda < 1$, then $L_{r,\omega}^{(j)} x - L_{r,\omega}^{(j)} x < 0$, that is

$$\rho \left(L_{r,\omega}^{(j)} \right) < \rho \left(L_{r,\omega} \right) < 1.$$

If $\lambda > 1$, then $L_{r,\omega}^{(j)} x - L_{r,\omega}^{(j)} x > 0$, that is

$$\rho \left(L_{r,\omega}^{(j)} \right) > \rho \left(L_{r,\omega} \right) > 1.$$
Table I displays the spectral radii of the corresponding iteration matrices with some randomly chosen parameters r, ω, n, p. The randomly chosen parameters α, β satisfy the conditions in Theorems 1-6. All numerical experiments have been carried out using Matlab 7.0.

Table I

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.8553</td>
<td>0.8517</td>
<td>0.8467</td>
<td>0.8523</td>
<td>0.8535</td>
</tr>
<tr>
<td></td>
<td>0.8531</td>
<td>0.8520</td>
<td>0.8475</td>
<td>0.8543</td>
<td>0.8535</td>
</tr>
</tbody>
</table>

From Table I, we see that these numerical results accordance with Theorems 1-6.

Example 2: We consider the following linear system $Ax = b$, where

$$A = \begin{pmatrix} I - B & H \\ K & I - C \end{pmatrix},$$

$$B = \begin{pmatrix} 1 \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 1 \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 1 \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \frac{1}{2} \end{pmatrix},$$

$$C = \begin{pmatrix} 1 \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \frac{1}{2} \end{pmatrix}.$$

