Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

Robert Höttinger, Lukas Krawczyk, Burkhard Igel

Abstract—This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA\(^1\) platform and the implemented approaches. Furthermore, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.

Keywords—Partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis.

I. INTRODUCTION

SINCE the automotive industry is still facing specific challenges among parallelism exploitations for embedded multicore systems especially in context with the AUTOSAR [1] standard, the AMALTHEA platform [2] has been developed in order to face these challenges and create meaningful solutions by providing automatic and effective processes for application distribution. Furthermore, increasing demands and requirements like computational power, safety issues, energy efficiency, various standards or product-line engineering call for the need of new approaches. Partitioning and mapping are two mandatory and established methods for application partitions. Hence, facilitating these processes among an automatic, scalable and modular basis becomes an important issue. By providing a development comprehensive, model-based, open, expandable and platform-independent exchange format in AMALTHEA, partitioning and mapping in the same context provide meaningful relevance in terms of industrial- and scientific-based applications.

Partitioning focuses in our work on forming tasks, consisting of runnables, that define execution units with a specific amount of instructions, and dependencies, that are derived from read and write accesses to labels (abstract memory), via an automatic mechanism with different objectives. The mechanism examines weighted directed acyclic graphs (WDAGs) and resulting partitions can be effectively distributed among processors without violating ordering constraints of runnables while considering activation rates, independent runnable groups, cyclic dependencies and communication overheads.

Mapping faces the problem of assigning tasks to specific processors effectively and thereby identifying a task allocation solution, that utilizes given resources in form of hardware models by different objectives. Such objectives are either implemented using ILP (integer linear programming) solver with respect to load balancing or energy-aware mapping strategies or by using heuristic methods like DFG (Data Flow Graph) load balancing in order to find effective solutions.

The parallel execution of such partitioned and mapped applications benefits from lower execution times and less energy consumption compared with sequential execution due to running more processors with lower frequencies [3]. Since both mechanisms rely on the model-based architecture and models can be imported and exported to and from industrial established tools as well as verified against various specifications, the implementations remain AUTOSAR compliant and provide consistent integration to state of the art automotive developments.

Fig. 1 Amalthea Platform: Processing Simulation and Analysis [has been composed in cooperation with Robert Bosch GmbH]

Fig. 1 shows both the partitioning and the mapping approaches integrated to the AMALTHEA platform. Each process accesses specific models and adapts them based on their configuration and corresponding model analyses. Further topics like Modeling, Codegeneration and Tracing provide necessary features for comprehensive system engineering but are not

\(^1\)ITEA 2 project call 4 Project No. 09013
The paper is organized as follows. The next section II outlines basic related work, whereas specific related work is referenced all over the paper. Section III describes the partitioning approaches as well as corresponding necessary and optional features, among their scientific intend, implementations and an example. Section V describes the subsequent mapping phase and outlines main benefits among another example. Finally, Section VI concludes the presented contents, emphasizes on benefits for industrial applications and proposes some future work.

II. RELATED WORK

Over the years, several strategies for partitioning and mapping in context of embedded software have been developed. In [5] a simulation methodology for embedded real-time and cyber-physical systems is introduced, which focuses on timing behavior as well as the combination of architecture properties and requirements. Each domain can be represented with specific computation models and recent work is addressing the multicore migration topic by means of specific algorithms.

Recent research featuring Augmented Hierarchical Task Graphs and several optimization techniques e.g. genetic algorithms and integer linear programming, has been described by Cordes in [6]. The author describes a parallelization framework, which integrates these techniques in order to perform an automated partitioning and mapping of software to heterogeneous hardware.

Furthermore, various scheduling publications like [7] or [8] or hardware and software co-synthesis publications using genetic algorithms like [9] address similar problems like the partitioning and mapping approaches of our work. However, compared to [7] our partitioning approach neither requires a unique exit node nor node duplication and merges tasks just within a specific configuration using a heuristic method. We further provide optimal WDAG partitions according to Amdahl’s law [10].

We will see, that various algorithms and approaches will be used for different purposes in the course of this paper. References are stated correspondingly.

III. PARTITIONING APPROACH

Forming partitions mostly concerns the division of processes into subprocesses whereas each subprocess, mostly denoted as a node (or runnable in our case), consists of computational load (also denoted as weight i.e. instructions) [11]. A partitioning process in context of (WDAGs), which occur in most computing applications as computation DAGs or task graphs [12], influences system performance according to later parallel execution. The more efficient the partitioning process forms computation sets distributed among computation units i.e. processors, the more the system benefits from time issues, energy demands or resource utilization in order to improve real-time applications. These aspects are common topics of interest in almost all areas of science and technology. Effective partitioning and mapping mechanisms provide parallel executable applications, consuming less processor time, such that more computation power can be used for further needs or less energy is consumed due to lower processor utilization. The following sections describe specific AMALTHEA approaches, that have been implemented within the tool platform in [2], for distributing modeled applications.

A. Preliminary Features

In terms of graph-theoretical computing, partitioning DAGs comes with a wide range of problems and methodologies, spread across a variety of applications. Although many tools and algorithms have been developed for such purposes in the past decades, they are not fully applicable to embedded real-time systems due to their desktop-, computer- or high-performance focus. Therefore, we propose different phases, that address the challenges in the automotive embedded real-time domain.

AMALTHEA data is stored within open source eclipse EMF models for various representations. Information used within the approaches presented in this paper address the software model consisting of labels (abstract memory), runnables, label accesses and activations as well as the constraints model consisting RunnableSequencingConstraints (dependencies). More detailed AUTOSAR[1]-compliant model descriptions can be found at [4].

For the embedded real-time system focus, the initial phase addresses grouping runnables referencing the same activation instance, such that any group only contains runnables with the same activation rate. Activations can be set to periodic, single, sporadic or custom and define the call frequency or call intervals of the referenced model element. Groups are modeled within ProcessPrototypes, that reference a specific activation and define a pre-task state for analysis purposes. ProcessPrototypes are transformed to tasks 1-to-1 after the analysis phases, such that a task consists of multiple runnables, can be called by a scheduler and features different properties and data like call graphs, activations and more.

Since our partitioning approach requires WDAGs, the subsequent phase considers dependency analysis and the elimination of directed cycles, also denoted as feedbacks. In our case, dependencies are derived from runnable’s label accesses, such that, if runnable A writes a label and runnable B reads the same label, a RunnableSequencingConstraint (RSC) within the constrains model is created, containing A as parent runnable and B as child runnable. In other words, dependencies are automatically derived from label accesses and stored within the constraints model, representing directed edges. In order to utilize the advantages of WDAGs, the recently available WDGs have to be transformed to be acyclic. Since such cycle elimination corresponds minimal feedback arc set (MFAS) determination (where an arc denotes an edge i.e. a dependency within a modeled RSC) and is
an NP-complete problem [13], we firstly check whether the WDA is planar. In the latter case, the problem can be solved within polynomial time [14]. In case the WDA is non-planar, finding a minimum feedback arc set is trivial, enumerating all instances efficiently is not necessarily as simple [15]. However, different MFAS feature different resulting graphs, if the MFAS is removed or transformed for feedback elimination. Such transformation is addressed in our case, in order to retain the dependencies for later analysis phases or code generations. In model terminology, MFAS RSCs are decomposed into AccessPrecedences. These AccessPrecedences are used to represent dependency on the one hand but to keep the dependency invisible to graph analysis on the other hand. According to later phases i.e. the code generation, such AccessPrecedences also define the data runnables work with, since some runnables need to be informed to work with, data that has been calculated in preceding iterations instead of waiting for current iteration updates.

Hence, each MFAS resulting WDA is assessed according to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path), such that a to parallelization potential and sequential runtime (the graph's critical path). The resulting edge visibility to feedback elimination. Such transformation is addressed in our case, in order to retain the dependencies for later analysis phases or code generations. In model terminology, MFAS RSCs are decomposed into AccessPrecedences. These AccessPrecedences are used to represent dependency on the one hand but to keep the dependency invisible to graph analysis on the other hand. According to later phases i.e. the code generation, such AccessPrecedences also define the data runnables work with, since some runnables need to be informed to work with, data that has been calculated in preceding iterations instead of waiting for current iteration updates.

Hence, each MFAS resulting WDA is assessed according to parallelization potential and sequential runtime (the graph’s critical path), such that a MFAS is identified, that provides minimal edge transformation and minimal sequential runtime regarding the resulting graph in case the edges are transformed. The following (1) results in the cardinality of MFAS solutions.

\[|MFAS| = \sum C_i \cdot C_j \cdot \prod |E_{C_i}| - |E_{C_{mce}(mce)}| \]

Equation (1) adds the products of each remaining cycle’s edge amounts to each edge, that belongs to more than one cycle. This ensures on the one hand, that only the minimal number of edges are transformed and on the other hand, that all MFAS combinations are considered. Since each product contains a solution, that includes all most common edges, these solutions must be subtracted (via the term \(-|E_{C_{mce}(mce)}|\) in 1), since they are not valid or ineffective (because they mostly result in a complete sequence \(\rightarrow \) not parallelizable). Simple cycles are determined via the Tarjan algorithm [16] using the Jgrapht library [17]. The result of this phase are WDA and AccessPrecedences for the transformed dependencies.

Before the actual partitioning is performed, another phase can be performed, that identifies independent graphs. Independent graphs do not share any resource or activation and are modeled within ProcessPrototypes. Such methodology allows forming tasks, that can be totally distributed to either different cores or even to totally different systems or electronic control units (ECUs). Furthermore, such independent ProcessPrototypes can be used for components, providing modularity and reusability. This phase also allows independent runnables to be merged into the same ProcessPrototype to prevent unnecessary system overhead (context switches, data passing) via considering the system’s critical path (CP), that provides the lower bound on the total time to execute a complete DAG [18]. The CP is defined by runnables and dependencies, forming a path from an entry node to an exit node, of which the sum of computation and communication costs is the maximum [19]. Communication costs is in this case derived from the label size of the information exchanged between runnables. The ProcessPrototype merging methodology is based upon a simple timing based combination heuristic, that merges two ProcessPrototypes, if they do not exhibit overlapping computations i.e. runnables, that are assigned to similar time slices at different ProcessPrototypes.

The resulting WDA is defined via \(G = (V, E, C, T) \) where \(V \) is the set of vertices (runnables), \(E \) is the set of edges (dependencies), \(C \) is the set of communication costs and \(T \) is the set of node computation costs.

B. Critical Path Partitioning

The previously mentioned CP is also used for one partitioning approach. Since the CP shall not be distributed due to increased execution time caused by communication and data exchange, it is assigned to the first ProcessPrototype and the graph’s branches are assigned to further ProcessPrototypes following a specific algorithm shown in the above pseudocode Algorithm 1. Further ProcessPrototypes (next to the CP) never exceed the CP’s execution or cause the CP to wait on input data. [20] already presents, that critical path partitioning, also denoted as dominant sequence clustering, provides comparable or even better performance than much-higher-complexity heuristics.

Algorithm 1. Pseudocode for critical path partitioning algorithm

The Algorithm 1 calculates a time frame for each runnable (line 1 in Algorithm 1), that provides earliest initial time \((eit)\) and latest start time \((lst)\) values. These values define, to which extent a runnable can be shifted with regard to the CP in order to not violate any order constraints defined by dependencies. The algorithm creates ProcessPrototypes (respectively tasks in line 6 in Algorithm 1) and checks time-slice-wise (line 7 in Algorithm 1) which runnables can be assigned according to ordering constraints i.e. dependencies (all preceding runnables must have finished their execution) (line 8 in Algorithm 1). From that runnable
amount, the algorithm decides, which runnable features the most limited time frame, such that runnables with more flexible time shifting values are selected at succeeding assignments (line 15 in Algorithm 1). This approach ensures minimal overall execution time and an accordingly low number of tasks. However, this approach is not able to limit the number of tasks, since the creation process is automated.

C. ESS Partitioning

Another implemented partitioning approach is based on an earliest start scheduling (ESS) and features a task number limitation. For this purpose, only runnable’s edr-values are calculated, that define the sum of the longest preceding path’s instructions.

\begin{algorithm}
\begin{algorithmic}[1]
\State Let R denote the set of all runnables
\State Let T denote the set of tasks (unit)
\State Let A denote the set of assigned runnables
\While{$|A| < |R|$}
\State let dr denote the runnable with lowest edr
\State let i denote the indices of tasks, to which latest runnables edr is dependent to
\Switch{edr}
\Case{0} assign edr to task, that features the lowest $/ utilization$, not earlier than edr’s max end time according to current distribution
\Case{1} assign edr to task, that edr is dependent to
\Case{>1} assign edr to task with latest dependency
\EndSwitch
\State ENDWHILE
\end{algorithmic}
\caption{Pseudocode for ESS partitioning algorithm}
\end{algorithm}

The value of T is predefined by the user. However, in case a complete sequential runnable ordering would define the algorithm’s input, all runnables would be assigned to the same partition (task), since line 8 and the subsequent switch case in Algorithm 2 keeps track of the dependencies and distributing a sequence of runnables would increase overall execution time due to additional synchronization and communication. Such synchronization or communication is required for partitions to share data via shared memory for example. We will later see, that the ESS approach provides better partitions compared with approaches based on earliest-deadline-first scheduling for instance. Line 9 in Algorithm 2 ensures, that load is balanced among partitions in case no parent of the runnable is located at the current tasks, since the runnable is assigned to the task featuring the lowest utilization and no order constraint is violated (parent assignment consideration). Line 11 and 13 assign runnables to the task, that contains the runnable’s (latest) parent. This keeps also communication low since no data has to be exchanged to other tasks and balances runnables among the predefined number of partitions.

Fig. 2 outlines all previously described features and phases i.e. activation analysis, label access analysis, phase elimination and the partitioning approaches denoted as graph analysis. The different phases provide a modular structure and efficient runnable distribution among partitions. Assessments are stated in section IV. Each phase can be configured and performed via a configuration- and a context menu or via a workflow engine provided by the AMALTHEA Tool platform.

Two more features are implemented within the partitioning methodology, which concern the graph visualization with the help of Jgraph [17] applets and the generation of more flexible graph representation models. The latter case addresses further analyses and optimization methods with commercial tools like the TA Toolsuite [21].

IV. PARTITIONING EVALUATION

The following sections describe key metrics for performance assessment in IV-A and evaluation regarding applications features and types including an actual embedded system application evaluation in IV-B.

A. Key Metrics

The partitioning approaches perform various calculations among WDAGs, in order to gain information about partial orders and effective load balancing. WDAG information is defined via the span, that is the length of the critical path and via the work, that is the sum of the node’s execution cycles (instructions). The partitioning’s result can be evaluated with regard to key metrics like parallelism, that is the sequential runtime divided by the parallel runtime, and the slackness, that is the factor by which the parallelism exceed the number of processors in the system [18]. EDF results are based on earliest deadline first scheduling [22]. Given an example graph from Fig. 3, we can derive

\begin{equation}
\text{span} = \sum_{R_{CP,i}} I(R_{CP,i}), CP = \{D9, J4\}; \text{span} = 9 + 4 = 13
\end{equation}

(2)

with $I(R_i)$ defining the Runnable R_i’s instructions,

\begin{equation}
\text{work} = \sum_{R_i} I(R_i) = 34
\end{equation}

(3)

parallelism factors p_x:

\begin{equation}
\text{parallelism factors } p_x:
\begin{align*}
P_{CPP} &= \frac{34}{13} \approx 2.62; P_{ESS2} = \frac{34}{17} = 2; P_{ESS3} = \frac{34}{14} \approx 2.43; \\
P_{EDF2} &= \frac{34}{22} \approx 1.55; P_{EDF3} = \frac{34}{18} \approx 1.89
\end{align*}
\end{equation}

(4)
and slackness factors s_j:

$$
s_{CPP} = \frac{34}{3 \cdot 13} \approx 0.87; s_{ESS2} = \frac{34}{2 \cdot 17} = 1;$$

$$
s_{ESS3} = \frac{34}{3 \cdot 14} \approx 0.81; s_{EDF2} = \frac{34}{2 \cdot 22} \approx 0.77;$$

$$
s_{EDF3} = \frac{34}{3 \cdot 18} \approx 0.63$$

Furthermore, Amdahl’s law [10] is used for speedup assessment using the following (6):

$$
\frac{\text{Time}_{before}}{\text{Time}_{after}} = \frac{1}{f} + (1 - f) \leq \text{Speedup}_{max} = \frac{1}{1 - f} = \frac{T_1}{T_\infty}
$$

Amdahl’s law in (6) defines the total speedup, in case a change improves a fraction f of the workload by a factor K. Some references also denote f as the amount of parallelizable code and K as the amount of processors.

Since the CPP approach always considers the critical path (span) as the most cost intensive task and creates tasks with no limitation among the branches of the graph, it always creates optimal system partitions, such that the resulting speedups corresponds Amdahl’s law’s best solution $\frac{T_1}{T_\infty}$ and thereby the maximal speedup. Both ESS’s and EDF’s speedup factors are calculated using the left part of 6 and thereby mostly do not achieve maximal speedup due to their task number limitation. However, the ESS approach is still able to create partitions that feature better slackness and speedup factors compared with EDF solutions. With regard to solutions shown in Fig. 3, the CPP provides the best complete system execution time of 14 instructions, followed by the ESS3 solution, that executes within 15 instructions.

Fig. 4 shows the system’s speedup depending on the critical path’s length among three different amount of partitions. Such system speedups can be achieved using the CPP approach without task number limitation. The values are calculated using Amdahl’s law and the parallelism factors based on a simple system with 1000 equal runnables. Fig. 4 reveals, that the shorter the critical path gets, the more speedup can be achieved using the CPP partitioning.

V. MAPPING APPROACH

While the focus of the partitioning approach lies in determining an ideal granularity and runnables distribution for the executable software partitions (runnables, tasks), the goal of the mapping process is to find one optimal allocation to the processors (cores) of a multi- or many-core hardware target. For this, we have implemented
several ILP based strategies in order to support the creation of pareto-optimal mapping solutions, each optimized toward one specific goal, e.g. minimizing the total execution time [23] or energy consumption [24]. The strategy for execution time minimization performs load-balancing in order to allocate tasks to cores, whereas the strategy for minimizing the energy consumption utilizes an heuristic algorithm. Minimizing the energy consumption is furthermore achieved by exploiting less power consuming voltage levels, which slow down tasks without harming the applications deadline. For both strategies, the ILP models describing the allocation problem are automatically created by the Amalthea Tool Platform, using only abstract models of the hardware and software descriptions.

Since determining such an optimal allocation is well known to be a NP complete problem, finding solutions for especially larger problem sizes will usually require a substantial amount of time. By following our two-phased approach however, we are able to significantly reduce the number of allocation subjects to a mere fraction of the original problem’s size using one of the presented partitioning functionalities. A typical engine control system for instance can usually consist of over 1200 runnables, which leads to approx. 6×10^{910} valid allocations. By applying the partitioning approach, these can be agglomerated into 54 tasks, abstracting the problem and reducing the amount of possible allocations to approx. 1×10^{72}, which are comparatively trivial to optimize.

The results of our experimental evaluation using both presented mapping strategies are illustrated in Fig. 6. It shows the minimal, average and maximal run-time, which is based on ten batched executions of the respective mapping strategy. During this evaluation, the energy minimization strategy is used for distributing 43 tasks on a hardware platform with four homogeneous cores, each consisting of two voltage levels, whereas the execution time minimization strategy is applied on a system with 54 tasks and a hardware platform with six heterogeneous cores. The functionality for solving both ILP models is provided by the open-source ojalgo Algorithms library.

As we can see, both approaches will generate allocations in less than one minute, which makes the mapping functionality suitable for rapid development of embedded systems. The quickest mapping generation can be observed on the energy minimization approach, which remains stable at less than one minute, which makes the mapping functionality suitable for rapid development of embedded systems. The run-time for the execution time minimization approach takes up to 39 seconds, which also indicates the upper bound of allocable tasks if rapid development is desired. Increasing the number of tasks to e.g. 72 will lead to run-times of up to 10 minutes.

VI. CONCLUSION

In this paper, we have presented partitioning and mapping approaches among the AMALTHEA Tool platform as well as their benefits in developing automotive embedded multicore systems. Different required analyses like the cycle elimination,
activation consideration or the model-based design address various demands of the automotive industry. By using the interfaces of AMALTHEA, the user is able to develop and automatically distribute AUTOSAR compliant applications for embedded multicore systems. We discussed ESS, EDF and CPP based partitioning techniques for WDAGs, which are used for solving the task partitioning problems. We show, that partitions can be formed optimally with no task number limitation and effectively with task number limitation according to key metrics.

With regard to mapping, ILP based methods have been presented, which provide optimal mapping generations towards specific goals, e.g. energy efficiency. In future work, we expect to extend the partitioning and mapping methods and offer further optimization objectives, e.g. memory utilization. Furthermore, measurements based on daily modality will be performed to show the precise gain of the AMALTHEA tool platform and in order to reveal further optimization potential.

Finally, we can conclude, that the partitioning approach can be used to agglomerate the runnables into tasks in order to simplify the mapping process and to facilitate optimization techniques, that could not be applied to the high (unpartitioned) amount of runnables otherwise. The important innovation is the two phase approach as well as the combination and adaption of various methods and techniques among WDAG partitioning and ILP mapping.

ACKNOWLEDGMENT
The authors would like to express their appreciation to the AMALTHEA consortium for sharing expertise, experience and knowledge.

REFERENCES

Robert Höttger (robert.hoettger@fh-dortmund.de) started his Ph.D. studies in 2014 among a collaboration between Dortmund University of Applied Sciences and Arts and Technical University Dortmund, Germany. His research focuses on automotive parallel software engineering and adaptive system behavior using trace data with logical clocks. Especially feedback-aware requirements and tracing as well as DAG-algorithms form recent activities in the AMALTHEA project.

Lukas Krawczyk (lukas.krawczyk@fh-dortmund.de) received his M.Sc. degree in informatics and started his Ph.D. studies in 2014 among a collaboration between Dortmund University of Applied Sciences and Arts and University Bielefeld, Germany. His current research focuses on optimized deployment of software to embedded-systems hardware and many-core scheduling.

Burkhard Igel (igel@fh-dortmund.de) received his doctorate degree (Ph.D.) in computer science from University of Dortmund after studying electrical engineering and computer science. After more than 15 years working for Siemens Corporation now he is Professor at University of Applied Science and Arts in Dortmund and chairman of the supervisory board of items AG. His research area covers distributed and parallel computing as well as requirements engineering and model-based design.