Abstract—This paper considers the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor's and Picard’s matrix methods; one illustrative example is included.

Keywords—Matrix Splines, Cubic Splines, Quartic Splines.

I. INTRODUCTION

In this work, the evaluation of matrix functions is frequent in the solution of differential systems. So, the system

\[\dot{Y}(t) = A(t) Y(t), \quad Y(0) = Y_0, \quad \Delta = [0,1] \]

where \(A(t) \) is matrix and \(Y_0 \) is a vector arises of the parabolic equation. The matrix differential equation

\[\ddot{Y}(t) = A(t) Y(t), \quad Y(0) = Y_0, \quad Y(0) = Y_1, \quad \Delta = [0,1] \]

where \(A(t) \) is matrix, \(Y_0 \) and \(Y_1 \) are vectors arises of the hyperbolic equation. The matrix differential equation

\[\dot{Y}(t) = A(t) Y(t) + B(t), \quad Y(0) = Y_0, \quad \Delta = [0,1] \]

where \(A(t) \) and \(B(t) \) are matrices appears in systems stability and control.

Consider the matrix differential equation in the form

\[\dot{Y}(t) = A(t) Y(t) + B(t), \quad Y(0) = D, \quad \Delta = [0,1] \]

where \(Y(t) \in \mathbb{C}^{m \times n} \), \(A(t) \), \(B(t) \), \(C(t) \) and \(D(t) \) are matrices. Let \(\Delta \) is partition as \(\Delta = \{0 = t_0 < \ldots < t_n = 1\} \). The set of matrix splines of order \(m \) defined as

\[M_{\mathbb{C}^{m \times n}}(\Delta)^{\ast m \times n} = \{Q|: \Delta \rightarrow \mathbb{C}^{m \times n}; \sum_{i=1}^{n-1} Q_{i,1} \in P_{m \times n}\} \]

If \(m = 2 \) the matrix splines are called matrix quadratic splines, \(m = 3 \) called matrix cubic splines, \(m = 4 \) called matrix quartic splines and \(m = 5 \) called matrix quintic splines.

Reference [2] deals with the construction of an approximate solution of the first order matrix linear differential equations using matrix cubic splines. The present paper extended the first order linear differential equations using different matrix splines and also approximate the solution by using Picard’s method and Taylor’s method which are best than all matrix splines [6], [7], [9].

II. THE MATRIX SPLINE METHODS

This section gives the theoretical studies for the matrix differential equation in the form (4) using the matrix quadratic splines, matrix cubic splines, matrix quartic splines and matrix quintic splines.

A. The Matrix Quadratic Splines

Consider the interval \(\Delta_k = /0, k/m, \quad k = 1, \ldots \), suppose the solution in the form

\[S_k(t) = Y(0) + \frac{1}{2} \alpha_0 t^2 \]

where \(Y(0) = D \), \(\dot{Y}(0) = A(0) Y(0) + Y(0) B(0) + C(0) \), but to find \(\alpha_0 \) we suppose that \(S_k(t) \) satisfies the matrix differential equation (4) at \(t = k \), so

\[S_k(k) = A(k) S_k(k) + B(k) \]

From (6) and (7) we get

\[k (I - \frac{k}{2} A(k)) \alpha_0 = A(k) Y(0) + Y(0) k + B(k) - Y(0) \]

where \(I \) is the identity matrix, from (8) we get \(\alpha_0 \) and so \(S_k(t) \) as in (6). Consider \(\Delta_i = [ik, (i+1)k] \), \(1 \leq i \leq n - 1 \); suppose the matrix quadratic solution in the form

\[S_i(t) = S_{i-1}(i k) + S_{i-1}(i k)(t - i k) + \frac{1}{2} \alpha_i (t - i k)^2 \]

As above we determine \(\alpha_i \) from
\[k \left(1 - \frac{k}{2} A((i+1)k) \right) \alpha_i = A((i+1)k) (S_{i-1}(k)) + S_{i-1}(k) k + B((i+1)k) - S_{i-1}(k) k, \]

and then \(S_i(t) \) are determined for all \(i = 1, ..., n \). Note that solubility of the suggested scheme (10) is guaranteed showing that the matrix coefficient of \(\alpha_i \) is invertible.

If \(M = \max_{i=1}^{\infty} \left\| A(t) \right\| \) then \(\left\| 1 - \frac{k}{3} A((i+1)k) \right\| \leq 1 \), so we get \(k \leq \frac{3}{M} \) and then (14) has a unique solution \(\alpha_i \).

\[C. \text{The Matrix Quartic Splines} \]

Consider the interval \(\Delta_0 = [0, k] \); suppose the solution in the form

\[S_0(t) = Y(0) + \ddot{Y}(0) t + \frac{1}{2} \dddot{Y}(0) t^2 + \frac{1}{6} \ddddot{Y}(0) t^3 + \frac{1}{24} \alpha_0 t^4, \]

for this case \(\alpha_0 \) can be determined from

\[\frac{k^3}{6} \left(1 - \frac{k}{4} A(k) \right) \alpha_0 = A(k) (Y(0) + \dot{Y}(0) k + \frac{1}{2} \ddot{Y}(0) k^2 + \frac{1}{6} \dddot{Y}(0) k^3 + \frac{1}{24} \alpha_0 k^4) \]

and \(S_0(t) \) as in (15). Consider \(\Delta_i = [ik, (i+1)k] \), \(1 \leq i \leq n - 1 \); suppose the matrix quartic solution in the form

\[S_i(t) = S_{i-1}(ik) + S_{i-1}(ik) (t-ik) + \frac{1}{2} S_{i-1}(ik) (t-ik)^2 + \frac{1}{6} \alpha_i (t-ik)^3, \]

as above we determine \(\alpha_i \) from

\[\frac{k^3}{6} \left(1 - \frac{k}{4} A((i+1)k) \right) \alpha_i = A((i+1)k) (S_{i-1}(ik) + S_{i-1}(ik) k) + \frac{1}{2} S_{i-1}(ik) k^2 + \frac{1}{6} \dddot{Y}(0) k^3 + \frac{1}{24} \alpha_i k^4 \]

and then \(S_i(t) \) are determined for all \(i = 1, ..., n \). Note that solubility of the suggested scheme (18) is guaranteed showing that the matrix coefficient of \(\alpha_i \) is invertible.

If \(M = \max_{i=1}^{\infty} \left\| A(t) \right\| \) then \(\left\| 1 - \frac{k}{3} A((i+1)k) \right\| \leq 1 \), so we get \(k \leq \frac{3}{M} \) and then (14) has a unique solution \(\alpha_i \).

\[D. \text{The Matrix Quintic Splines} \]

Consider the interval \(\Delta_0 = [0, k] \); suppose the solution in the form

\[S_0(t) = Y(0) + \ddot{Y}(0) t + \frac{1}{2} \dddot{Y}(0) t^2 + \frac{1}{6} \ddddot{Y}(0) t^3 + \frac{1}{24} \dddddot{Y}(0) t^4 + \frac{1}{120} \alpha_0 t^5, \]

and then \(S_i(t) \) are determined for all \(i = 1, ..., n \). Note that solubility of the suggested scheme (10) is guaranteed showing that the matrix coefficient of \(\alpha_i \) is invertible.
for this case \(\alpha_i \) can be determined from
\[
\frac{k^4}{24} (I - \frac{k}{5} A(k))\alpha_0 = A(k)(Y(0) + \dot{Y}(0)k + \frac{1}{2} \ddot{Y}(0)k^2 + \frac{1}{6} \dddot{Y}(0)k^3 + \frac{1}{24} \ddddot{Y}(0)k^4)
\]
and then \(S_i(t) \) as in (19).

Consider \(\Delta_i = [k, (i+1)k] \), \(1 \leq i \leq n-1 \); suppose the matrix quintic solution in the form
\[
S_i(t) = S_{i+1}(i) + S_{i+1}(i)(t - ik) + \frac{1}{2} S_{i+1}(i)(t - ik)^2 + \frac{1}{6} S_{i+1}(i)(t - ik)^3 + \frac{1}{24} S_{i+1}(i)(t - ik)^4
\]
\[
+ \frac{1}{120} \alpha_i (t - ik)^5,
\]

as above we determine \(\alpha_i \) from
\[
\frac{k^4}{24} (I - \frac{k}{5} A((i+1)k))\alpha_i = A((i+1)k)(S_{i+1}(i)k
\]
\[
+ S_{i+1}(i)k + \frac{1}{2} S_{i+1}(i)k^2 + \frac{1}{6} S_{i+1}(i)k^3 + \frac{1}{24} S_{i+1}(i)k^4
\]
\[
+ \frac{1}{120} \alpha_i (t - ik)^5,
\]
and then \(S_i(t) \) is determined for all \(i = 1, \ldots, n \).

Note that solubility of the suggested scheme (22) is guaranteed showing that the matrix coefficient of \(\alpha_i \) is invertible.

If \(M = \max_{0 \leq s \leq 1} |A(t)| \) then \(\|1 - (1 - \frac{k}{5} A((i+1)k))\| \leq 1 \), so we get
\[
k \leq \frac{5}{M}
\]
and then (22) has a unique solution \(\alpha_i \).

III. THE MATRIX PICARD’S METHOD

In this section we see the Picard’s method for the matrix differential equation in the form (4) then the first approximation is
\[
Y_{i+1}(t) = Y_i(t) + \int_0^t (A(t)Y_i(t) + B(t))dt
\]
VI. CONCLUSION

In this work we have found the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor's and Picard’s matrix methods we reached these important numerical methods of solution through the application in the examples.

REFERENCES

