Abstract—Freshly laid eggs from green turtles, *Chelonia mydas*, were randomly collected from Ras Al-Hadd Reserve, Oman. Eggshells taken from eggs and sand collected from the body chamber were analyzed for eight heavy metals (Al, Br, Cd, Co, Cu, Fe, S, and Zn) using inductively coupled plasma mass spectrometry (ICP). Heavy metal concentrations varied significantly (P<0.05) between nest sand and eggshells. Zn values were significantly higher than the other heavy metals. A total of 60 heterotrophic bacteria belonging to eight genera were isolated from fresh egg contents (albumen and yolk). Resistance of the isolates to Ak = amikacin, Ak = amikacin, Amp= ampicillin, Gm= gentamycin, Cn = chloramphenicol, Min = minocycline, N = Neomycin, S= streptomycin, Smx = sulphamethoxazole, Tmp = trimethoprim, Tob = tobramycin was tested. More than 40% of the isolates were multiple resistant to 2-10 antibiotics. Most of the resistant strains were also resistant to Zn. The value of these findings may indicate that the origin of pollution is of human contaminated effluents.

Keywords—Antibiotic resistance, bacteria, environment, heavy metals, sea turtles.

I. INTRODUCTION

On their migratory routes, sea turtles are exposed to various pollutants, including heavy metals and antibiotic resistant bacteria. Such pollutants can find their way into the digestive tract, and consequently contaminate the reproductive organs, such as the uterus and ovary where the eggs are developed [1]-[6]. Most of pollutants find their way into the developing eggs and consequently interfering with the embryonic development. Generally, these pollutants can be used as bio-indicator of contaminated effluents. For example, antibiotic resistant bacteria were used as bio-indicators of polluted effluents in turtles [2], [7].

Marine animals such as sea turtles and fish are subjected to pollutants and multiple antibiotic resistant bacteria (MARB) which is mostly originated in sewage water that enter the marine habitats. Sewage used for irrigation, land applied wastewater sludge, municipal and industrial waste can easily contaminate the marine environment [2]-[3], [7]-[11]. Certain heavy metals, such as Cu and Zn are essential for metabolic activity; however, they become toxic when they are at higher levels [4]. On the other hand, accumulation of non-essential heavy metals is toxic to organisms. Such heavy metals are indicators of environmental pollution [12]. In Oman, heavy metal accumulation was reported in terrestrial and marine habitats [2]-[5], [7]-[9].

Multiple antibiotic resistant bacteria and chemical pollutants originated in contaminated effluents are frequently discharged into the aquatic environment [1], [7], [13]-[17]. MARB resist chlorination used in the tertiary treatment process and can infect fish and marine turtles [1]-[3], [7].

Heavy metal tolerance is linked to resistance of antibiotics, thus heavy metals selects MARB in contaminated habitats [18], [19]. Some heavy metals in pig manure increased microbial resistance to antibiotics [20]. It was reported that sludge dumped on habitats can be a major source of heavy metal contamination some of which end up in the marine environment [21]. Thus, contamination of heavy metal can be used for bio-monitoring environmental pollution.

In turtles, heavy metals from the digestive tract can find their way to the eggshell during formation of the eggs [22], [23]. In another study, an increased accumulation of heavy metal contamination in turtle eggs at Ras Al-Had Reserve was reported [2], [4]. Microbial and heavy metal from polluted industrial sewage may contaminate the turtle feeding grounds. Also other studies in Oman reported MARB and heavy metal contamination in fish from a nearby sewage dumping site [7], [9].

The objectives of this study are to determine heavy metal levels in sand and eggshell as well MARB contamination in albumen and yolk. This study is crucial and may be used as a conservation indicator for the survival of marine turtles in this region.

II. MATERIALS AND METHODS

A. Study Site

Ras Al-Hadd Reserve, Oman is located on the Gulf of Oman in the Arabian Sea between 22°32’ N – 59°45’ E and 22°14’ N – 59°48’ E.

B. Sample Collection and Preparation

A total of 20 sand samples from nest body-chambers were collected at random sites from each nest between June and September. Samples were collected at a depth of 30 – 80 cm. A total of 200 g of sand were collected from each nest, dried and ground to powder. Half gram of powder from each sample was digested in a tube containing HNO₃, HCl and H₂O₂. [24]. Three freshly laid eggs from each nest were collected for 60. Egg contents (eggshell, albumen and yolk) were separated. Each eggshell was dried, digested and grounded into powder.
Digested eggshell samples were analyzed for eight heavy metals (Al, Br, Cd, Co, Cu, Fe, S, and Zn) using atomic absorption spectrophotometry (AAS) with electrothermic atomization in graphite furnace.

Albumen and yolk were used to isolate heterotrophic bacteria and the samples were inoculated in enrichment media. The samples were incubated at 37°C for 24 hr and then transferred to selective media [1], [7]. The isolates were tested for their antibiotic resistance using disk diffusion method and their resistance patterns were recorded. The following antibiotics were used Ak, Amp, Gm, Cn, Min, N, S, Smx, Tmp, Tob [1], [7], [25].

III. RESULTS

There were significant differences in heavy metals concentrations between sand and eggshells. The highest levels in sand and eggshells were Zn followed by Al. In addition, Cu, Fe and S were significantly higher in sand over the eggshell (Fig. 1).

The most frequent bacterial isolate in albumen and yolk was Citrobacter spp. followed by Aeromonas spp. and Pseudomonas spp. (Fig. 2).

The majority of the isolates were resistant to Smx followed by Cn, Amp and S. Only few isolates were resistant to Ak (Fig. 3). Most of the isolates were resistant to 2 and 10 antibiotics (Fig. 4).

IV. DISCUSSION

In this study, contamination of heavy metal in sand-nest may be derived from the nesting turtles. Heavy metal deposition from industrial activities may lead to heavy metals accumulation in the feeding habitats. Biomonitoring of heavy metal contamination in coastal areas is important for assessing marine pollution. Rapid development of industrial sectors near the coastal cities of Oman, population growth and contaminated effluent discharges probably caused increase heavy metal contamination [2], [4], [9], [21], [26]-[29]. Rapid accumulation of heavy metals in marine habitats received more attention in recent years [30]. Increased usage of heavy metals in modern industries, anthropogenic metal from mining, intensive aquaculture activities, treated and untreated municipal wastewater from urban developments and agriculture led to a significant increase in contamination levels.
Pseudomonas These include bacterial isolates from sewage recycled water were resistant to heavy metal concentrations [4], [8], [21], [28], [29]. Also, Treated sewage effluents from industrial sources have higher environmental pollution [1], [2], [7], [8], [13], [17], [26]. Microbial antibiotic resistance were published in Oman such as sea turtles, to heavy metals resulted in chronic intoxication which may be fatal [4], [31], [32].

In addition to heavy metals, several studies related to microbial antibiotic resistance were published in Oman revealed that sewage contaminated effluents contribute to environmental pollution [1], [2], [7], [8], [13], [17], [26]. Treated sewage effluents from industrial sources have higher heavy metal concentrations [4], [8], [21], [28], [29]. Also, bacterial isolates from sewage recycled water were resistant to several antibiotics. The resistant microbes to antibiotic isolated from sewage utilize heavy metals for their growth. These include Aeromonas spp., Enterobacter spp., Pseudomonas spp., and Salmonella spp. [1], [2], [7], [8], [13], [17], [26].

Chlorine is the most common disinfectant for bacteria and viruses used in tertiary treatment sewage effluent [33], [34]. However, it was reported that MARB resist chlorine activity and remain viable even at high concentrations [3], [8], [13], [35]. Bacterial population and re-growth increase significantly in distribution lines used for irrigation further from the point of disinfection with the significant loss of chlorine potency at the end of the distribution lines. The microbes were resistant to many antibiotics [1], [2], [7], [8], [13], [17], [26], [34].

Coliforms and fecal coliforms are standard indicators of enteric microbial pathogens in recycled water [36], [37]. In Oman, E. coli in many treated waste effluents exceeded the permitted standards of treated sewage effluents and were resistant to many antibiotics [1], [36]. The presence of pathogenic and non-pathogenic MARB in recycled water is environmental and public health concerns due to the potential transmittance of resistant determinants to pathogens [1].

Globally, MARB from different species were isolated from wild animals and sewage was found to have serious impact on terrestrial and aquatic ecosystems. [7], [13], [15], [16]. In parts of the world, including Oman, MARB were isolated from turtles, fish and fresh water habitats. This is a clear indication of antimicrobial drugs overuse and that the environment is used as a dumping ground of antimicrobial drugs and pharmaceutical compounds [1], [2], [7], [8], [13], [17], [26]. In Oman, MARB isolated from fish feeding near the treated effluents dumping site is a clear evidence how microbes from human activity can cause infection not only to fish, but also to sea turtles [1], [6], [7]. Resistant bacteria in cloacal fluid and eggs isolated from green and loggerhead turtles suggesting that the turtles were infected during their migration routes or in contaminated feeding habitats [1], [6], [13]. Therefore, MARB isolated from aquatic habitats were used as bio-indicators of pollution as well as to monitor degree of pollution in the turtles’ feeding grounds [1], [3], [7], [17].

It was concluded that contaminated sewage effluent continuously causes an increase heavy metal pollution and dissemination of antimicrobial resistance genes to marine habitats. Stringent rules and regulations must be put in effect to prevent further environmental deterioration.

REFERENCES


[18] OL Akinbowale, H Peng, P Grant and MD Barton. Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow


