Dynamic Performance Evaluation of Distributed Generation Units in the Micro Grid

Abdolreza Roozbeh, Reza Sedaghati, Ali Asghar Baziar, Mohammad Reza Tabatabaei

Abstract—This paper presents dynamic models of distributed generators (DG) and investigates dynamic behavior of the DG units in the micro grid system. The DG units include photovoltaic and fuel cell sources. The voltage source inverter is adopted since the electronic interface which can be equipped with its controller to keep stability of the micro grid during small signal dynamics. This paper also introduces power management strategies and implements the DG load sharing concept to keep the micro grid operation in grid-connected and islanding modes of operation. The results demonstrate the operation and performance of the photovoltaic and fuel cell as distributed generators in a micro grid. The entire control system in the micro grid is developed by combining the benefits of the power control and the voltage control strategies. Simulation results are all reported, confirming the validity of the proposed control technique.

Keywords—Stability, Distributed Generation, Dynamic, Micro Grid.

I. INTRODUCTION

MICRO GRIDS are integrated energy systems consisting of interconnected loads and distributed energy resources which as a system can operate in parallel with the grid or in an intentional island mode. Micro grid has a special superiority on not only improving power quality and reliability but also relieving pressure of energy and environment [1], [2].

Generally, distributed generation units refer to small-scale electric power generators that produce electricity at a site close to the customer or an electric distribution system (in parallel mode). From the customers’ viewpoint, a potentially lower cost, higher service reliability, high power quality, increased energy efficiency, and energy independence could be the key points of a suitable DG unit. Moreover, the utilization of renewable kinds of distributed generations such as wind, photovoltaic, geothermal or hydroelectric power can also provide significant environmental benefits [3].

Distributed generation systems are also presented as a suitable solution offer high reliable electrical power supply as well as make up local ac micro grids [3]. And different kinds of energy resource are available, such as photovoltaic panels, fuel cells, or speed wind turbines. Most of these energy sources need inverters as interfaces which connected to an ac common bus. In addition, every unit must be able to operate independently when communication is too difficult due to the long distance used in micro grid. Parallel operations of inverters are increasingly developed to obtain redundant power system and create micro grid systems [4]. The reliability as well as the power capability of the supply system can be increased by replacing a single inverter unit with more and smaller inverter units in paralleling. These techniques need some forms of control interconnection among the paralleling inverters [5], [6]. These interconnecting wires not only restrict the location of the inverter units, but can also act as a source of noise and failure. Therefore, the system is not truly distributed or redundant. This paper presents a control method that can manage the power sharing among the DG units in both grid-connected and islanded modes. The proposed control method is tested in three typical scenarios namely grid connected mode, islanded mode, and transition mode. The power electronics interfaces, such as a voltage source inverter plays a vital role in interfacing the DG units with the utility grid. The dynamic models available in the PSCAD/EMTDC simulation software for fuel cell, photovoltaic and the power inverters enable simulation for both the steady and dynamic behavior of the three-phase micro grid. The control strategy is developed to combine the advantages of the power control and the voltage control strategies. The former is to be preferred to ensure stability of the whole conversion system, while the latter allows a more accurate generation of the reference voltages necessary to apply the pulse width modulation (PWM) technique. The combined use of the two control modes allows the implementation of a simple and effective three-phase control scheme, particularly to deal with critical conditions that can occur in the micro grids. In order to test the performance of the control strategy, two DG units are connected to the main grid system in the simulation. Simulation results suggest that this control method can make the parallel-connected inverters to improve the micro grid performance.

II. CONTROL STRATEGY

Two DG units were considered in this study. Each DG unit comprises of a dc source, a PWM voltage source inverter (VSI) and LC filters [7]. Fig. 1 details the interconnection between DG units with main grid. They are connected at the point of common coupling (PCC). In islanded mode, the two DG units are controlled to provide local power and voltage support for loads 1 to 3. This configuration reduces the burden on generation and delivery of power directly from the main grid and enhances the immunity of critical loads to system disturbances in the grid. An inverter can operate in two modes either in the grid-connected mode by using power control or the isolated mode using voltage control.
mode of operation, the VSI can no longer track the grid voltage characteristics. In the islanding mode of operation, the VSI needs to have an external frequency reference.

Fig. 3 Inverter control system for each distributed generation

The configuration of the grid-connected inverter, used in each DG micro grid system under examination is shown in Fig. 3. The inverter transfers the energy produced by the power source on the micro grid, controlling the power flows through suitable impedance. This is constituted by three impedances of resistance R1 and inductance L1 and a parallel capacitive filter providing a path for some high-order harmonics at the switching frequency. Considering that the inverter operates in voltage control mode, its controller generates three reference signals $E_{gridu}$, $E_{gridv}$, $E_{gridw}$, each of which is referred to the output voltage that is to be applied on each phase, so that the impedance current $I_u$, $I_v$, $I_w$, tracks its desired value corresponding to the power flows required between the dc and ac sides. Obviously, it is needed that the output voltages of the VSI to track the reference voltages by applying the PWM technique. The performance of the proposed control strategies was evaluated by computer simulation using PSCAD/EMTDC simulation software [8]. The system was operated initially in grid-connected mode. To

\[ P_m = \frac{1}{2} L \frac{d^2}{dt^2} \]

\[ Q_m = \frac{1}{2} L \left( \frac{d}{dt} \right)^2 \]

\[ \frac{d}{dt} \]

\[ \frac{d^2}{dt^2} \]
verify the effectiveness of the proposed control method in this
simulation, the following scenarios was carried out by
scenario (1) Grid connected mode (Switch close), (2) Islanded
mode (Switch open) and (3) Transition mode (Switch open
and close within 2 seconds).

III. MATHEMATICAL MODEL OF A FUEL CELL AND
PHOTOVOLTAIC

Different DG units are considered to form the micro grid. The
dynamic models are integrated into the micro grid [9]. A
detailed description of the models adopted for solid oxide fuel
cells and photovoltaic generation systems have to be utilized
to connect through inverters. A simple model is hereby
adopted for the inverters, in which the switching as well as the
internal loss has been ignored.

A. Solid Oxid Fuel Cell Model

A simulation model is developed for the SOFC in
PSCAD/EMTDC based on the dynamic SOFC stack as show n
in Fig. 4. The parameters of this model are given in [10, 11].
Considering ohmic losses of the stack, the expression of total
stack voltage can be written as

\[
V_{fc} = N_0 \left( E_0 + \frac{RT}{2F} \ln \left( \frac{P_{H_2}P_{O_2}^{0.5}}{P_{H_2O}} \right) \right) - IR_f
\]  

(1)

where \( V \) is total stack voltage (V), \( E_0 \) is Standard reversible
cell potential (V), \( r \) is internal resistance of stack (Ω), \( I \) is
stack current (A), \( N \) is number of cells in stack, \( R \) is universal
gas constant (J/mol K), \( T \) is stack temperature (K), \( F \) is
Faraday’s constant (C/mol), \( P_{H_2} \) is partial pressure of hydrogen, \( P_{O_2} \) is partial pressure of oxygen and \( P_{H_2O} \) is partial
pressure of water. The total power generated by the fuel cell
is:

\[
P_{fc} = N I V
\]

(2)

B. Photovoltaic Model

A dynamic model of a photovoltaic array system is
developed as the DG2 shown in Fig. 5. In order to extract the
maximum efficiency from a solar cell it is necessary to operate
the cell at the point where the cell delivers maximum power.
PV cells are grouped in larger units to form PV modules,
which are then interconnected in a parallel-series
configuration to form PV arrays. Output voltage of the PV cell
is a function of the photocurrent that depends on the solar
irradiation level during its operation. The output current of the
PV cell is represented by (3). For the PV array consisting of \( N_s \)
series module and \( N_p \) parallel branches, the PV voltage and
current are given by (4) and (5). The power output of the PV
cell is the product of output current and output voltage of PV,
which is represented by (6).

\[
I_c = I_{ph} - I_{o} = I_{ph} - I_{o} \left[ e^{\frac{q(V + IR_s)}{AKT}} - 1 \right]
\]  

(3)

where \( I_{ph} \) is the light generated current in a PV cell, \( I_o \) is the
reverse saturation current of diode, \( T \) is cell temperature in
Kelvin, \( A \) is Ideality factor, \( K \) is Boltzman constant, \( q \) is
electron charge, \( \alpha \) is current temperature coefficient, \( G \) is
irradiance, \( \beta \) is voltage temperature coefficient, \( N_s \) is number
of modules connected in series and \( N_p \) is number of modules
connected in parallel.

\[
V_{PV} = N_s \times \left[ V_{oc} - \beta (T - T_r) - R_s (T - T_r) \right]
\]  

(4)

\[
I_{PV} = N_p \left( I_{oc} + 0.1 \left( \frac{G}{1000} \right) (T - T_r) + \left( \frac{G}{1000} - 1 \right) I_{ph} \right)
\]  

(5)

\[
P_{PV} = I_{PV} \times V_{PV}
\]

(6)

Fig. 4 PSCAD/EMTDC implementation of SOFC

Fig. 5 PSCAD/EMTDC implementation of photovoltaic

IV. SIMULATION RESULTS

The various simulations were carried out for the system as
shown in Fig. 1. In this configuration, the DC components,
which represent the DC voltage source, are modeled as fuel
cell and photovoltaic sources. To examine the validity of the
simulation platform, the following scenarios was carried out
by scenario namely grid connected mode (Switch close),
islanded mode (Switch open) and Transition mode (Switch
open and close within 2 seconds).
A. Grid Connected Mode

Initially, the transfer switch (Switch) was on at 0.2sec and the DGs were all operating in the power control mode. Their output power could be controlled respectively. The variation of real and load power are shown in Figs. 6 and 7. The power from the grid is 0.25MW and power from both DG is 0.05MW. In the Fig. 9 shows the load1, 2 and 3 are consume the same power about 0.100MW. During an additional load of 50% at t = 1sec, the power from the grid will reduce and power will manage by the two DG units that will increase in power to provide the sufficient power to the loads respectively as shown in Figs. 8 and 9.

B. Islanding Mode

In this simulation, the transfer switch (Switch) was initially off at 0.2 sec and the DG units were all operating in the isolated mode. All distributed generation started to work in the voltage control mode. When the switch is opened the DG units continues to supply the power to the load in Fig. 12 without the main supply. Under this condition, the DG units generate higher power to meet the load requirements. At any load amount, the DG units should be able to meet the voltage amplitude and frequency reference of the main grid. During this mode, the power only produces by the DG units is about is 0.15MW in Figs. 10 and Fig. 11 shows the load1, 2 and 3 are consume the same power about 0.085MW.

C. Transition Mode

In the simulation, initially the transfer switch (Switch) was on which is operating in the power control mode. At 5sec, the transfer switch was turned off and transfer switch (Switch) at the bus connected to the grid is opened. When the grid is disconnected from the system, the DG units increases its power so as to compensate for the loss of grid supply at a period of 4 to 6sec is shown in Fig. 12 (a). An amount of power to be support for total load is increasing from 0.050MW to 0.150MW in islanded mode. The simulation shows, the proposed method for controlling DG unit is effective during islanding in 2sec from main grid. And also, this method of control guarantee continuity of power supply to loads after islanding from main utility grid that the inverter controls respond accordingly, with the load voltage returning quickly to its pre-disturbance value is shown in Fig. 12 (b).
Fig. 12 (a) Transition mode with two distributed generation system in operation and (b) Load Voltage

V. CONCLUSION

This paper presented appropriate control systems for local generators able to correctly manage a microgrid during its transition from the grid-connected to an islanded operation. To be able to study the dynamic behavior of a microgrid including fuel cell and photovoltaic generation units interfaced with the network by voltage source inverter. It’s been developed and implemented for the both DG units and directly connected to the network. The dynamic performance of the microgrid is studied with disturbances. A control technique for the inverter switching signals has been discussed. Furthermore, the models for the three-phase inverter are simulated and verified will be controllable to be 1 p.u.

REFERENCES


