An Efficient Gaussian Noise Removal Image Enhancement Technique for Gray Scale Images

V. Murugan, R. Balasubramanian

Abstract—Image enhancement is a challenging issue in many applications. In the last two decades, there are various filters developed. This paper proposes a novel method which removes Gaussian noise from the gray scale images. The proposed technique is compared with Enhanced Fuzzy Peer Group Filter (EFPGF) for various noise levels. Experimental results proved that the proposed filter achieves better Peak-Signal-to-Noise-Ratio PSNR than the existing techniques. The proposed technique achieves 1.73dB gain in PSNR than the EFPGF technique.

Keywords—Gaussian noise, adaptive bilateral filter, fuzzy peer group filter, switching bilateral filter, PSNR.

I. INTRODUCTION

DIGITAL images are often corrupted by noise during their acquisition and transmission. A fundamental challenge in image enhancement is to reduce noise while maintaining the desired image features such as edges, textures, and fine details. In particular, there are two common types of noise namely Gaussian noise and Impulse noise, which are introduced during the acquisition and transmission processes [1]–[3]. Noisy images can be found in many applications. Noise is also introduced in digital images, when a damaged image is scanned. Digital cameras may introduce noise because of CCD sensor malfunction, electronic interference or flaws in data transmission. In the last two decades, many methods have been introduced in the literature to remove either Gaussian or Impulse noise. This paper proposed an efficient technique to remove Gaussian noise. Some of the recent methods for removing Gaussian noise are discussed in this section.

Adaptive Bilateral filter (ABF) is proposed by Buyue Zhang for sharpness enhancement and noise removal [4]. The ABF sharpens an image by increasing the slope of the edges without producing overshoot or undershoot. The ABF is efficient to implement, and provides a more reliable and more robust solution to slope restoration. The ABF works well for both natural images and text images.

Samuel Morillas et al. introduced Fuzzy Peer Group Filter (FPGF) concept [5], which extends the peer group concept in the fuzzy setting.

A fuzzy peer group will be defined as a fuzzy set that takes a peer group as support set and where the membership degree of each peer group member will be given by its fuzzy similarity with respect to the pixel under processing. The FPGF is able to efficiently suppress Gaussian noise and impulse noise, as well as mixed Gaussian-impulse noise.

Chih-Hsing Lin et al. proposed switching bilateral filter (SBF) [6] with a texture and noise detector for universal noise removal. This filter can remove both the additive Gaussian noise and the impulse noise. In most of the noise model cases, the SBF outperforms other filters, both in PSNR and visually. Moreover, it shows excellent performance in the simultaneous removal of both impulse and Gaussian noise.

In 2012, a noise detection and reduction method using fuzzy logic has been proposed [7]. This method designed a fuzzy based adaptive mean filter to remove impulse, Gaussian and speckle noise. It removes all types of noise efficiently.

In 2012, a switching scheme for noise detection and genetic algorithm for reduction [8] has been proposed. This method uses a supervised learning algorithm using non-linear filters. It removes impulse and Gaussian noise for gray scale image. It needs more computational time.

In October 2013, a noise detection method named fuzzy filter and vector median filter has been proposed to remove Gaussian, impulse and mixed noises [9]. This method performs better than other methods but the computational time is high.

To further improve the quality of the image, we proposed an Enhanced Fuzzy Peer Group filter (EFPGF) [10]. In [10], EFPGF is compared with ABF, SBF and FPGF for various noise levels. It performs better than those methods for both Gaussian and mixed noise.

This paper proposes an efficient technique for removing Gaussian noise in gray scale images. The key point of the proposed technique is to use the probability concept in the images. The least probable pixel in the image may be identified as noisy pixel and it is replaced with most probable gray level value. It uses the histogram concept to check the least and most probable gray level values. The proposed technique uses Wiener filter as pre-processing step to remove Gaussian noise to some extent.

This paper is organized as follows: Section II describes the overall system architecture for noise removal. Section III elaborates the proposed technique for removing the Gaussian noise. Section IV demonstrates the experimental results followed by conclusion in Section V.

II. SYSTEM ARCHITECTURE

The overall system architecture is shown in Fig. 1. The noisy image (I) is initially filtered using Wiener filter. This filter is used to remove Gaussian noise to some extent. The
Wiener Filtered Image (WFI) obtained in this step is analyzed in Section IV. The most probable gray level of the entire filtered image is calculated and it is set as Global Probable Histogram Count (G). Each pixel \((i)\) in the WFI is restored by using neighboring pixels which is formed as a window of size 3 x 3. The most probable gray level value within the window is calculated and it is termed as Local Probable Histogram Count (L). Each pixel can be replaced by the most probable gray value \((S)\) depends on a threshold \((T)\). \(S\) is calculated as minimum of L and G. If only L is used, then every pixel will be replaced with the local most probable histogram count value. Hence, \(G\) is also used to normalize the image. If every pixel in the image is replaced, then the restored image will have the same value in every coordinate. In order to avoid this, \(T\) is calculated to know the noisy pixel only. The optimum threshold value is obtained through various experiments which is shown in Section IV. Absolute difference of the current pixel and \(S\) is calculated to know if the pixel has more variance than the neighbouring pixels. If the absolute difference is greater than the threshold, then the pixel is considered as noisy image and it is replaced with \(S\).

III. PROPOSED NOISE REMOVAL ALGORITHM

The proposed technique is based on the most probable gray value in the image. Before applying the proposed technique, the noisy image is given to Wiener filter as it removes Gaussian noise more efficiently to some extent. Next level is based on Global and Local histogram count for filtering. Global histogram count is used to avoid pixel replication locally.

\[
\sigma^2 = \frac{1}{NM} \sum_{n_1, n_2 \in N} \alpha(n_1, n_2) - \mu^2
\]
(2)

where \(\eta\) is the N-by-M local neighborhood of each pixel in the image. Then, it creates a pixel-wise Wiener filter using these estimates,

\[
b(n_1, n_2) = \mu + (\sigma^2 - v^2)/\sigma^2 (\alpha(n_1, n_2) - \mu)
\]
(3)

where \(v^2\) is the noise variance. If the noise variance is not given, then it uses the average of all the local estimated variances. This step yields WFI, which is used for further processes.

Step2. Calculate histogram count of WFI. The maximum value in the histogram count is set as \(G\).

Step3. Each pixel in WFI undergoes the following condition

\[
i = \begin{cases}
1 & \text{abs}(i - S) < T \\
\min(G, L) & \text{abs}(i - S) > T
\end{cases}
\]
(4)

The position of the window in the WFI for a center pixel \((0,0)\) is given in Fig. 2. G, L are Global Probable Histogram Count and Local Probable Histogram Count respectively. \(S=\min\{G, L\}\) and \(T\) is Threshold

In (4), the first condition indicates that if the pixel is not affected by noise then the pixel is retained. Otherwise replace the pixel with \(S\). The threshold \((T)\) value selection is based on various manual testing explained in the next section.

IV. EXPERIMENTAL RESULTS

Experiments are conducted for images such as MRI brain image, Lena and many gray scale images. Images are tested with noise levels ranges from 0.01 to 0.1. The quality of the filtered image should be estimated by subjective tests. One of the subjective metrics is Mean Square Error (MSE), which is evaluated between original frame and reconstructed frame. The lesser the MSE value, the better is the prediction quality. Mean Square Error is given by

\[
MSE = \frac{1}{MN} \sum_{(x,y) = (0,0)}^{M} \sum_{(x,y) = (0,0)}^{N} [f(M,N) - \hat{f}(M,N)]^2
\]
(5)

where \(f(M,N)\) represents the original image and \(\hat{f}(M,N)\) is the restored image with size \(M \times N\). Another widely used metric for comparing various image enhancement techniques is the PSNR. The mathematical formula for PSNR is

\[
PSNR = 10 \log_{10} \left(\frac{(2b-1)^2}{MSE} \right)
\]
(6)

where \(b\) in the equation is the number of bits to represent a pixel. For 8-bit uniformly quantized image, \(b = 8\). The higher the PSNR value, the better is the quality of the restored image. Another important performance metrics used is Structural Similarity Index Measure (SSIM). The SSIM is given by

\[
SSIM = \frac{1}{\eta} \left(\begin{array}{c} 1 + \frac{\eta}{2} \left(\frac{n_1}{\sqrt{\eta - 1}} \cdot \frac{n_2}{\sqrt{\eta - 1}} \right) \end{array} \right)
\]
(7)

\[
L_{ssim} = \frac{1}{\eta} \left(\begin{array}{c} 1 + \frac{\eta}{2} \left(\frac{n_1}{\sqrt{\eta - 1}} \cdot \frac{n_2}{\sqrt{\eta - 1}} \right) \end{array} \right)^2
\]
(8)

where \(\eta\) is the N-by-M local neighborhood of each pixel in the image.
where μ_x and μ_y are mean in x and y coordinates respectively. σ_x^2 and σ_y^2 are variance of the image in x and y coordinates respectively. c_1 and c_2 are included to avoid instability when μ_x^2 and μ_y^2 are very close to zero, respectively.

Experiments are performed for various threshold values for noise level 0.1. Table I shows PSNR obtained by the proposed technique for various threshold levels.

<table>
<thead>
<tr>
<th>Threshold/Image</th>
<th>PSNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI Brain Image</td>
<td>32.7235</td>
</tr>
<tr>
<td>Lena</td>
<td>32.4486</td>
</tr>
<tr>
<td>Cameraman</td>
<td>31.524</td>
</tr>
</tbody>
</table>

Some of the experimental images and their results are shown in Fig. 3. It shows the original image, noisy image of noise level 0.1 and the filtered image. From Fig. 3, it is clear that the quality of the filtered image in the proposed technique is visually better. The PSNR value obtained by the Wiener Filter is shown in Table II. Table III shows the results for MRI brain image, Lena and cameraman images for various noise levels.

From Tables II and III, it is clear that the PSNR obtained by the proposed technique is better than the PSNR obtained by Wiener filter. It is also observed that obtained PSNR for all images decreases as noise level increases. The maximum PSNR is obtained in Lena image for noise level 0.01 which is 35.92dB.

The average time taken for the proposed technique to remove noise is 12.65 seconds. The PSNR achieved by the proposed technique with and without Wiener filter for noise level 0.1 is shown in Fig. 4. It is observed that Wiener filter plays a small role in the proposed technique.

From the results [10], it is observed that EFPFGF technique is better than the conventional ABF, SBF and FPGF techniques. Hence the results obtained by the proposed technique are compared with the results obtained by the EFPFGF technique. Fig. 5 shows the PSNR comparison of the proposed technique with EFPFGF technique for all noise levels of MRI brain image. Table IV shows the PSNR obtained by the proposed technique and the EFPFGF technique of MRI brain image for various noise levels. Table IV also shows the PSNR gain of the proposed technique over EFPFGF technique. It is calculated as
where P_1 is the PSNR achieved by the proposed technique and P_2 is PSNR achieved by the EFPGF technique. From the Table IV, it is observed that the proposed technique achieves better PSNR than the EFPGF technique for all noise levels.

V. CONCLUSION

This paper presents an efficient image enhancement technique for removing Gaussian noise of gray scale images.

TABLE III

<table>
<thead>
<tr>
<th>Images</th>
<th>Metrics</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI Brain</td>
<td>PSNR</td>
<td>34.4406</td>
<td>34.4445</td>
<td>34.3723</td>
<td>34.3194</td>
<td>34.2126</td>
<td>34.0834</td>
<td>33.9409</td>
<td>33.758</td>
<td>33.5914</td>
<td>33.366</td>
</tr>
<tr>
<td></td>
<td>SSIM</td>
<td>0.9821</td>
<td>0.9365</td>
<td>0.8774</td>
<td>0.8187</td>
<td>0.7661</td>
<td>0.721</td>
<td>0.6832</td>
<td>0.6528</td>
<td>0.6274</td>
<td>0.6047</td>
</tr>
<tr>
<td>Lena</td>
<td>PSNR</td>
<td>35.9164</td>
<td>35.8566</td>
<td>35.7762</td>
<td>35.6571</td>
<td>35.5134</td>
<td>35.3243</td>
<td>35.1083</td>
<td>34.938</td>
<td>34.6851</td>
<td>34.476</td>
</tr>
<tr>
<td></td>
<td>SSIM</td>
<td>0.9994</td>
<td>0.9978</td>
<td>0.995</td>
<td>0.9911</td>
<td>0.9863</td>
<td>0.9804</td>
<td>0.9736</td>
<td>0.9661</td>
<td>0.9575</td>
<td>0.9486</td>
</tr>
<tr>
<td>barbara</td>
<td>PSNR</td>
<td>32.3752</td>
<td>32.3512</td>
<td>32.3101</td>
<td>32.2602</td>
<td>32.1976</td>
<td>32.0959</td>
<td>32.0176</td>
<td>31.9071</td>
<td>31.7986</td>
<td>31.685</td>
</tr>
<tr>
<td></td>
<td>SSIM</td>
<td>0.9996</td>
<td>0.9984</td>
<td>0.9964</td>
<td>0.9935</td>
<td>0.99</td>
<td>0.9858</td>
<td>0.9808</td>
<td>0.9752</td>
<td>0.9689</td>
<td>0.9621</td>
</tr>
<tr>
<td></td>
<td>MSE</td>
<td>0.9991</td>
<td>0.9965</td>
<td>0.9923</td>
<td>0.9864</td>
<td>0.9791</td>
<td>0.9705</td>
<td>0.9605</td>
<td>0.9497</td>
<td>0.9376</td>
<td>0.9249</td>
</tr>
<tr>
<td></td>
<td>SSIM</td>
<td>0.9996</td>
<td>0.9984</td>
<td>0.9964</td>
<td>0.9935</td>
<td>0.99</td>
<td>0.9858</td>
<td>0.9808</td>
<td>0.9752</td>
<td>0.9689</td>
<td>0.9621</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>Noise Level/ Technique</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFPGF Technique</td>
<td>34.11</td>
<td>33.729</td>
<td>33.028</td>
<td>32.921</td>
<td>32.569</td>
<td>32.007</td>
<td>31.77</td>
<td>31.337</td>
<td>30.457</td>
<td>29.899</td>
</tr>
<tr>
<td>Proposed technique</td>
<td>34.4406</td>
<td>34.4445</td>
<td>34.3723</td>
<td>34.3194</td>
<td>34.2126</td>
<td>34.0834</td>
<td>33.9409</td>
<td>33.758</td>
<td>33.5914</td>
<td>33.366</td>
</tr>
<tr>
<td>PSNR Gain</td>
<td>0.3306</td>
<td>0.7155</td>
<td>1.3443</td>
<td>1.3984</td>
<td>1.6436</td>
<td>2.0764</td>
<td>2.1709</td>
<td>2.421</td>
<td>3.1344</td>
<td>3.467</td>
</tr>
<tr>
<td>Average Gain</td>
<td>1.7358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The proposed technique identifies the noisy pixel in the image and restores that pixel. The least probable pixel is identified as noisy pixel and it is replaced by the most probable pixel. The proposed technique is compared with Wiener Filter and EFPGF techniques for various noise levels. Experimental results found that the proposed technique is better than the Wiener Filter EFPGF techniques. The PSNR gain obtained by the proposed technique is 1.7358dB higher than the EFPGF technique.

Fig. 4 PSNR comparison of the proposed technique with and without Wiener Filter for noise level 0.1

Fig. 5 PSNR comparison of the Proposed Technique with EFPGF Technique
REFERENCES

