Nonplanar Ion-acoustic Waves in a Relativistically Degenerate Quantum Plasma

Swarniv Chandra, Sibarjun Das, Agniv Chandra, Basudev Ghosh, Apratim Jash

Abstract—Using the quantum hydrodynamic (QHD) model the nonlinear properties of ion-acoustic waves in are latistically degenerate quantum plasma is investigated by deriving a nonlinear Spherical Kadomtsev–Petviashvili (SKP) equation using the standard reductive perturbation method equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of ion-acoustic waves in quantum plasma.

Keywords—Kadomtsev-Petviashvili equation, Ion-acoustic Waves, Relativistic Degeneracy, Quantum Plasma, Quantum Hydrodynamic Model.

I. INTRODUCTION

The investigation of ultra-dense matter has been carried out quite extensively and intensively in the recent years. Such matter is found in metal nanostructures, neutron stars, white dwarfs and other astronomical bodies as well as in laser plasma interaction experiments. In such situations the average inter-fermionic distance is comparable or even less than the thermal de Broglie wavelength and as a result the quantum degeneracy becomes important. In such extreme conditions of density the thermal pressure of electrons may be negligible as compared to the Fermi degeneracy pressure which arises due to implications of Pauli’s exclusion principle. In such extreme conditions of density the electron Fermi energy $E_F = \hbar^2 (3\pi^2 n_e)^{2/3}/2m_e$ may become comparable to the electron rest mass energy (mc^2) and the electron speed can approach the speed of light (c) in vacuum. So the plasma in the interior of such compact astrophysical objects is both degenerate and relativistic. Such a plasma is also likely to be produced in the next generation laser based plasma compression schemes. Under such conditions quantum and relativistic effects are unavoidable. Recent reviews of quantum plasma physics are carried out by [18] as well as by [19]. However regarding the ion-acoustic waves in degenerate quantum plasmas only a few works have been reported. Misra et al. [20] have investigated the modulational instability of EAWs in non-relativistic quantum plasma consisting of two distinct groups of electrons and immobile ions. The propagation of electron-acoustic solitary waves in a two-electron temperature quantum magnetoplasma has also been reported [21]. All these works use quantum hydrodynamic models and consider only the non-relativistic cases. But in extreme conditions of density such as in a typical white dwarf where the electron number density can be as high as 10^{28} cm$^{-3}$ the degeneracy can be relativistic and both quantum and relativistic effects should be taken into account. Recent investigations indicate that such quantum-relativistic plasmas can support solitary structures at different length scale of excitation [22], [23]. The nonlinear propagation of ion-acoustic waves in relativistically degenerate quantum plasma has been studied by a few authors [24],[25]. Very recently we have investigated the solitary excitations of EAWs in a two electron populated relativistically degenerate super-dense plasma and shown that relativistic degeneracy significantly influences the conditions of formation and properties of solitary structures [26], [27]. To the best of our statistical effect through the equation of state. The model has been widely used to study quantum behaviour of plasma. A survey of the available literature [1]-[17] shows that most of the works done in quantum plasma in order to study the nonlinear behaviour of different plasma waves uses non relativistic case or with weakly relativistic approximation. The matter in some compact astrophysical objects (e.g. white dwarfs, neutron stars, magnetars etc.) exists in extreme conditions of density. In such situations the average inter-fermionic distance is comparable to or less than the thermal de Broglie wavelength and hence quantum degeneracy effects become important. At extreme high densities the thermal pressure of electrons may be negligible as compared to the Fermi degeneracy pressure which arises due to implications of Pauli’s exclusion principle. In such extreme conditions of density the electron Fermi energy $E_F = \hbar^2 (3\pi^2 n_e)^{2/3}/2m_e$ may become comparable to the electron rest mass energy (mc^2) and the electron speed can approach the speed of light (c) in vacuum. So the plasma in the interior of such compact astrophysical objects is both degenerate and relativistic. Such a plasma is also likely to be produced in the next generation laser based plasma compression schemes. Under such conditions quantum and relativistic effects are unavoidable. Recent reviews of quantum plasma physics are carried out by [18] as well as by [19]. However regarding the ion-acoustic waves in degenerate quantum plasmas only a few works have been reported. Misra et al. [20] have investigated the modulational instability of EAWs in non-relativistic quantum plasma consisting of two distinct groups of electrons and immobile ions. The propagation of electron-acoustic solitary waves in a two-electron temperature quantum magnetoplasma has also been reported [21]. All these works use quantum hydrodynamic models and consider only the non-relativistic cases. But in extreme conditions of density such as in a typical white dwarf where the electron number density can be as high as 10^{28} cm$^{-3}$ the degeneracy can be relativistic and both quantum and relativistic effects should be taken into account. Recent investigations indicate that such quantum-relativistic plasmas can support solitary structures at different length scale of excitation [22], [23]. The nonlinear propagation of ion-acoustic waves in relativistically degenerate quantum plasma has been studied by a few authors [24],[25]. Very recently we have investigated the solitary excitations of EAWs in a two electron populated relativistically degenerate super-dense plasma and shown that relativistic degeneracy significantly influences the conditions of formation and properties of solitary structures [26], [27]. To the best of our
knowledge no investigation has been made for the non-planar wave propagation of ion-acoustic waves in degenerate quantum plasmas including relativistic effects. The motivation of the present paper is to investigate the solitary structures of IAWs in relativistically degenerate dense quantum plasma by applying Kadomtsev-Petviashvili equation.

II. BASIC FORMULATION AND NONLINEAR ANALYSIS

We consider a two-species quantum plasma system comprised of electrons and ions. We also first take the pressures for both electrons and ions via the so called fluid pressure equations. The governing equations are

\[\frac{\partial n_e}{\partial t} + \nabla \cdot (n_e \mathbf{v}_e) = 0, \quad (1) \]

\[\frac{\partial \mathbf{v}_e}{\partial t} + \nabla \cdot (n_e \mathbf{v}_e \mathbf{v}_e) = -\nabla \phi + \frac{k_B T_e}{m_e} \mathbf{v}_e, \quad (2) \]

\[\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{v}_i) = 0, \quad (3) \]

\[\frac{\partial \mathbf{v}_i}{\partial t} + \nabla \cdot (n_i \mathbf{v}_i \mathbf{v}_i) = -\nabla \phi + \frac{k_B T_i}{m_i} \mathbf{v}_i + \mathbf{f}_i, \quad (4) \]

Here, \(p_a \) is the relativistic degeneracy pressure in dense plasma given by [28]

\[p_a = \left(\frac{\pi n_i^2}{6} \right) \left[\frac{R_n (2R_e^2 - 3) + 3 \sinh^{-1} R_e}{3R_n} \right], \quad (5) \]

in which

\[R_n = p_{F,n} / m_e c = \left[\frac{3}{8} \pi n_i^2 / 8 \pi n_i^2 / 3 \hbar^2 c^3 / \hbar^2 / m_i \right]^{1/3} = R_n, \quad (6) \]

where \(R_n = (n_e / n_i) \) with \(n_i = 8 \pi n_i^2 / 3 \hbar^2 c^3 = 5.9 \times 10^{29} \text{ cm}^{-3} \), \(c \) being the speed of light in vacuum. \(p_{F,n} \) is the electron Fermi relativistic momentum. It is to be noted that in the limits of very small and very large values of the Fermi parameter \(R_n \), we obtain:

\[p_{F,n} = \left(\frac{3}{8} \pi n_i^2 / \hbar^2 c^3 \right) \quad \text{(For } R_n \to 0) \quad (7) \]

\[p_{F,n} = \left(\frac{3}{8} \pi n_i^2 / \hbar^2 c^3 \right) \quad \text{(For } R_n \to \infty) \quad (8) \]

Here, \(n_e, v_e, q_e \) are the density, mass, velocity and charge for the \(\alpha \)-species particles respectively with \(\alpha = e \) for electrons and \(\alpha = i \) for ions \((q_i = -e, q_e = e) \). Also \(p_{F,i} \) is the electron (ion) pressure, \(\hbar \) is the Reduced Plank’s constant divided by \(2\pi \). Now using the following suitable normalizations, i.e.

\[(x, y, z) \to \frac{W_p (x, y, z)}{v_p}, \quad \mathbf{v} \to \mathbf{v} / c, \quad \phi \to \frac{\epsilon \phi}{k_BT_e}, \quad t \to \frac{t}{\sqrt{\sigma}}, \quad \theta \to \theta, \quad (9) \]

in which \(p_{F,0} = n_0 = n_i T_e \) is the \(\alpha \)-particle Fermi temperature, \(\phi \) is the electrostatic potential \(c_n = \sqrt{k_BT_e / m} \) is the ion-sound speed and \(\omega_{pe} - \sqrt{k_BT_e / m} \) is the particle plasma frequency, and choosing the coordinates \((0, 0, 0) \), Now considering the fact that \(1 / n_e \), \(r \), \(\phi \), \(\theta \), \(\phi \), \(\theta \), \(\phi \), \(\theta \) the basic (1)-(4) can be written in the following normalized form:

\[\frac{\partial n_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r n_e \mathbf{v}_e \mathbf{v}_e \right) - \frac{\partial \phi}{\partial r} + \frac{2}{r} \frac{\partial}{\partial r} \left(n_e \mathbf{v}_e \right) + n_e \frac{\partial \omega_{pe}}{\partial \phi} = 0, \quad (10) \]

\[\frac{\partial n_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r n_i \mathbf{v}_i \mathbf{v}_i \right) - \frac{\partial \phi}{\partial r} + \frac{2}{r} \frac{\partial}{\partial r} \left(n_i \mathbf{v}_i \right) + n_i \frac{\partial \omega_{pe}}{\partial \phi} = 0, \quad (11) \]

\[\frac{\partial \mathbf{v}_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r n_e \mathbf{v}_e \mathbf{v}_e \right) - \frac{\partial \phi}{\partial r} + \frac{2}{r} \frac{\partial}{\partial r} \left(n_e \mathbf{v}_e \right) + n_e \frac{\partial \omega_{pe}}{\partial \phi} = 0, \quad (12) \]

\[\frac{\partial \mathbf{v}_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r n_i \mathbf{v}_i \mathbf{v}_i \right) - \frac{\partial \phi}{\partial r} + \frac{2}{r} \frac{\partial}{\partial r} \left(n_i \mathbf{v}_i \right) + n_i \frac{\partial \omega_{pe}}{\partial \phi} = 0, \quad (13) \]

\[\frac{\partial \mathbf{v}_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r n_e \mathbf{v}_e \mathbf{v}_e \right) - \frac{\partial \phi}{\partial r} + \frac{2}{r} \frac{\partial}{\partial r} \left(n_e \mathbf{v}_e \right) + n_e \frac{\partial \omega_{pe}}{\partial \phi} = 0, \quad (14) \]

\[\gamma_{pi} \left(\frac{\partial \mathbf{v}_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r n_i \mathbf{v}_i \mathbf{v}_i \right) - \frac{\partial \phi}{\partial r} + \frac{2}{r} \frac{\partial}{\partial r} \left(n_i \mathbf{v}_i \right) + n_i \frac{\partial \omega_{pe}}{\partial \phi} \right) = 0 \quad (15) \]

where, \(u_e, v_e \) are the velocity components of \(\alpha \)-species particles in the radial \((r) \) and polar angle \((\theta) \) direction, \(\sigma = T_p / T_i \), \(m = m_i / m_e \), \(H = h \nu_p / k_B T_e \) is the non-dimensional quantum parameter.

III. DERIVATION OF THE KADOMTSEV-PETVIASHVILI EQUATION

In order to investigate the propagation of ion-acoustic (IA) waves in the quantum plasmas, we employ the standard reductive perturbation technique to obtain the Kadomtsev-Petviashvili equation (SKPE). The independent variables are stretched as \(\xi = \sqrt{c^2} \left(r - \frac{v_p}{c} \right), \tau = c / \sqrt{c^2} \) and the dependent variables are expanded as:

\[n_e = 1 + \varphi_n + \varphi^2_n + \ldots, \quad (16) \]
\[u = 1 + \varepsilon u_{\varepsilon} + \varepsilon^2 u_{\varepsilon^2} + \ldots \] \hspace{1cm} (17)

\[v = 1 + \sqrt{\varepsilon} v_{\varepsilon} + \varepsilon v_{\varepsilon} + \varepsilon^2 v_{\varepsilon^2} + \ldots \] \hspace{1cm} (18)

\[\phi = 1 + \varepsilon \phi_{\varepsilon} + \varepsilon^2 \phi_{\varepsilon^2} + \varepsilon^3 \phi_{\varepsilon^3} + \ldots \] \hspace{1cm} (19)

\[p = 1 + \varepsilon p_{\varepsilon} + \varepsilon^2 p_{\varepsilon^2} + \ldots \] \hspace{1cm} (20)

where \(\varepsilon = e \) for electrons and 1 for ions.

Now, substituting (20) in (10)-(15) and collecting the terms in different powers of \(\varepsilon \), we obtain in the lowest order of \(\varepsilon \) as

\[n_{\varepsilon} = \frac{m}{\gamma_{\varepsilon} - v_{\varepsilon}} \phi = \alpha \phi \] \hspace{1cm} (21)

\[n_{\varepsilon} = \frac{1}{\gamma_{\varepsilon} - \sigma_{\varepsilon}} \phi = \alpha \phi \] \hspace{1cm} (22)

\[u_{\varepsilon} = \frac{m v_{\varepsilon}}{\gamma_{\varepsilon} - v_{\varepsilon}} \phi = b \phi \] \hspace{1cm} (23)

\[u_{\varepsilon} = \frac{v_{\varepsilon}}{\gamma_{\varepsilon} - \sigma_{\varepsilon}} \phi = b \phi \] \hspace{1cm} (24)

\[p_{\varepsilon} = \frac{F_{m}}{\gamma_{\varepsilon} - v_{\varepsilon}} \phi = c \phi \] \hspace{1cm} (25)

\[p_{\varepsilon} = \frac{\gamma_{\varepsilon}}{\gamma_{\varepsilon} - \sigma_{\varepsilon}} \phi = c \phi \] \hspace{1cm} (26)

\[\frac{\partial \nu_{\varepsilon}}{\partial \varepsilon} = \frac{m}{\gamma_{\varepsilon} - v_{\varepsilon}} \phi \] \hspace{1cm} (27)

\[\frac{\partial \nu_{\varepsilon}}{\partial \varepsilon} = \frac{1}{\gamma_{\varepsilon} - \gamma_{\varepsilon}} \phi \] \hspace{1cm} (28)

and,

\[v_{\varepsilon} = \pm m(\gamma_{\varepsilon} + \sigma_{\varepsilon})/(1 + m) \] \hspace{1cm} (29)

where \(F_{\varepsilon} = (\varepsilon/3)(R_{\varepsilon} / \sqrt{(1 + R_{\varepsilon})}) \) is the term arising from relativistic pressure in weakly relativistic case, whereas for ultra-relativistic case \(F_{\varepsilon} = \varepsilon R_{\varepsilon}/3 \) where \(X = m_{e}c^{2}/2k_{B}T_{e} \).

Equation (29) shows that the wave can propagate outward or inward depending on the consideration of the sign. For the next higher order in \(\varepsilon \) we obtain

\[\frac{\partial n_{\varepsilon}}{\partial \varepsilon} - \frac{\partial n_{\varepsilon}}{\partial \varepsilon} + \frac{\partial n_{\varepsilon}}{\partial \varepsilon} = (n_{\varepsilon} \frac{\partial \nu_{\varepsilon}}{\partial \varepsilon} \cdot \) \hspace{1cm} (30)

\[1 \frac{\partial \nu_{\varepsilon}}{\partial \varepsilon} + \frac{1}{\nu_{\varepsilon}} (2n_{\varepsilon} + \frac{1}{\eta}) = 0, \]
\[
\begin{align*}
\frac{b_i \phi}{\partial t} + h_i \phi \frac{\partial \phi}{\partial \xi} - m_F a_i \phi \phi \frac{\partial \phi}{\partial \xi} - m_i \frac{\partial^2 \phi}{\partial \xi^2} - \frac{H_i^0}{4} \frac{\partial^4 \phi}{\partial \xi^4} & = m_i \frac{\partial \phi}{\partial \xi} - m_F a_i \phi \phi \frac{\partial \phi}{\partial \xi} + \nu_i \frac{\partial^2 \phi}{\partial \xi^2} + \gamma_i \phi \\
\text{i.e. } m_i \frac{\partial \phi}{\partial \xi} - m_F a_i \phi \phi \frac{\partial \phi}{\partial \xi} + \nu_i \frac{\partial^2 \phi}{\partial \xi^2} & = L_i
\end{align*}
\]
where \(L_i = b_i \phi + h_i \phi \frac{\partial \phi}{\partial \xi} - \sigma a_i \phi \phi \frac{\partial \phi}{\partial \xi} \)

\[
\begin{align*}
\frac{b_i \phi}{\partial t} + h_i \phi \frac{\partial \phi}{\partial \xi} - \sigma a_i \phi \phi \frac{\partial \phi}{\partial \xi} & = \frac{2 \gamma_i h_i \phi}{\partial t} + \frac{\gamma_i \frac{\partial \phi}{\partial \eta} + \frac{\partial \phi}{\partial \eta} \frac{\partial \phi}{\partial \xi} + L_i'}
\end{align*}
\]

\[
\begin{align*}
\phi \text{, } c_F \frac{\partial \phi}{\partial t} + F_F c_F \phi \frac{\partial \phi}{\partial \xi} & = m_F a_c \phi \phi \frac{\partial \phi}{\partial \xi} + 2 y h \phi \\
\text{i.e. } F_F c_F \frac{\partial \phi}{\partial t} & = \gamma \frac{\partial \phi}{\partial \eta} - \gamma \frac{\partial \phi}{\partial \eta} + \frac{\partial \phi}{\partial \xi} \frac{\partial \phi}{\partial \xi}
\end{align*}
\]
where \(L_i' = c_F \frac{\partial \phi}{\partial t} + F_F c_F \phi \frac{\partial \phi}{\partial \xi} + y h \phi \frac{\partial \phi}{\partial \xi} \)

\[
\begin{align*}
\phi \text{, } c_F \frac{\partial \phi}{\partial t} + h_c \phi \frac{\partial \phi}{\partial \xi} + \gamma \frac{\partial \phi}{\partial \eta} - \gamma \frac{\partial \phi}{\partial \eta} - \frac{\partial \phi}{\partial \xi} \frac{\partial \phi}{\partial \xi} & = \frac{2 \gamma_i h_i \phi}{\partial t} + \frac{\gamma_i \frac{\partial \phi}{\partial \eta} + \frac{\partial \phi}{\partial \eta} \frac{\partial \phi}{\partial \xi} + L_i''}
\end{align*}
\]

\[
\begin{align*}
\phi \text{, } c_F \frac{\partial \phi}{\partial t} + h_c \phi \frac{\partial \phi}{\partial \xi} + \gamma \frac{\partial \phi}{\partial \eta} & = \frac{2 \gamma_i h_i \phi}{\partial t} + \frac{\gamma_i \frac{\partial \phi}{\partial \eta} + \frac{\partial \phi}{\partial \eta} \frac{\partial \phi}{\partial \xi} + L_i''}
\end{align*}
\]

\[
\begin{align*}
\frac{\partial^2 \phi}{\partial \xi^2} & = \frac{\partial \phi}{\partial \xi} - \frac{\partial \phi}{\partial \xi} \\
\frac{\partial^2 \phi}{\partial \xi^2} & = \frac{\partial \phi}{\partial \xi} - \frac{\partial \phi}{\partial \xi}
\end{align*}
\]

From (37) \(\gamma_i L_i' - L_i'' = \gamma_i(v_i \frac{\partial \phi}{\partial \xi} - \frac{\partial \phi}{\partial \xi} - F_{\phi \phi} \frac{\partial \phi}{\partial \xi} + \gamma \frac{\partial \phi}{\partial \xi}) \)

From (39) \(m_i \frac{\partial \phi}{\partial \xi} - m_F a_i \phi \phi \frac{\partial \phi}{\partial \xi} = L_i \)

\[
\begin{align*}
\gamma_i L_i' - L_i'' & = \gamma_i(v_i \frac{\partial \phi}{\partial \xi} - \frac{\partial \phi}{\partial \xi} - F_{\phi \phi} \frac{\partial \phi}{\partial \xi} + \gamma \frac{\partial \phi}{\partial \xi})
\end{align*}
\]
Now in order to solve the equation we transform the set of equations into a simple looking structure. Let us consider

$$\frac{\partial^2 \phi}{\partial \xi^2} + 1 + \frac{\nu_m a}{\nu v_{i0}^2} \left(\frac{H^4}{(v_i - \nu m v_{i0})} \right) = 0$$

$$\frac{\partial^2 \phi}{\partial \eta^2} + \frac{v_i}{V_{i0}} + \frac{\nu m a}{\nu v_{i0}^2} \left(\frac{H^4}{(v_i - \nu m v_{i0})} \right) = 0$$

Next eliminating the second order quantities from (30)–(36) by means of (21)–(29) we obtain the variable coefficient SKPE as:

$$\left(\frac{\partial^2 V}{\partial \xi^2} + 1 + \frac{\nu m a}{\nu v_{i0}^2} \left(\frac{H^4}{(v_i - \nu m v_{i0})} \right) + \frac{D_{ij}}{\partial \xi^2} \right) = 0$$

$$\left(\frac{\partial^2 V}{\partial \eta^2} + 1 + \frac{\nu m a}{\nu v_{i0}^2} \left(\frac{H^4}{(v_i - \nu m v_{i0})} \right) + \frac{D_{ij}}{\partial \eta^2} \right) = 0$$

where

$$\phi, \mu = 1/m$$

and

$$A = \left(\frac{v_i - \nu m v_{i0}}{v_{i0} - \nu m v_{i0}} \right) \left(\frac{v_i - \nu m v_{i0}}{v_{i0} - \nu m v_{i0}} \right)$$

$$B = \left(\frac{v_i - \nu m v_{i0}}{v_{i0} - \nu m v_{i0}} \right) \left(\frac{v_i - \nu m v_{i0}}{v_{i0} - \nu m v_{i0}} \right)$$

Now if the angular dependence can be neglected, the SKPE (62) reduces to usual KdV equation. If we assume the similarity solution, viz.
\[
\zeta = \zeta - \frac{1}{2} \nabla \cdot \nabla \zeta, \quad \phi = \phi(\zeta, \tau)
\]

(65)

Then (62) reduces under the suitable boundary conditions (66) to the following standard Korteweg-de Vries equation (67) with solution as (68):

\[
\phi \rightarrow 0, \quad \frac{d^2 \phi}{d \zeta^2} \rightarrow 0 \quad \text{as} \quad \zeta \rightarrow \pm \infty
\]

(66)

\[
\frac{\partial \phi}{\partial \tau} + A \frac{\partial \phi}{\partial \zeta} + B \frac{\partial^3 \phi}{\partial \zeta^3} = 0
\]

(67)

\[
\phi = \frac{3U_A}{A} \operatorname{sech} \left[\frac{U_A}{4B} (\zeta - U_A \tau) \right]
\]

(68)

In order to study the effects of relativistic degeneracy parameter F (which depends on R), Quantum diffraction parameter (H) and ion temperature (σ) we have made plots in Figs. 1-3.

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{fig1.png}
 \caption{Solitary profiles for different value of F}
 \end{figure}

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{fig2.png}
 \caption{Solitary profiles for different value of H}
 \end{figure}

IV. DISCUSSION AND CONCLUSION

As the relativistic degeneracy parameter F determines the transition from ultrarelativistic to non relativistic cases it is important to know how it affects the structure and properties of ion-acoustic waves in a quantum plasma. It has been found that relativistic degeneracy effects have little effect in the properties of solitary profiles. On the other hand as quantum diffraction parameter increases the solitary structures become more narrow but the amplitude remains almost constant [26]. Ion temperature has very minute effect on solitary profiles in plasmas. Finally we would like to point out that the investigation presented here may be helpful in the understanding of the basic features of long wavelength electron plasma waves in dense and hot plasmas such as can be found in white dwarfs, neutron stars and intense laser-solid plasma experiments.

ACKNOWLEDGMENT

The authors would like to thank CSIR, Govt of India; DST, Govt of India, Institute for Plasma Research, Gandhinagar, India, Jadavpur University & Techno India University, Kolkata, India and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy for providing resources that helped in carrying out the work.

REFERENCES

Dr. Swarniv Chandra is an Assistant Professor in the Department of Physics, Techno India University, Salt Lake, Kolkata. He graduated from University of Calcutta (2005), and did his post-graduation from Indian Institute of Technology, Delhi, India (2008) and completed his doctorate from Jadavpur University, Kolkata (2013). He became a life member of the Indian Physical Society (IPS) and the Plasma Science Society of India (PSSI) as well as the Indian Science Congress Association (ISCA). His field of interest includes quantum and relativistic plasma and other nonlinear behavior in space plasma. He has bagged many awards in different levels including the prestigious Birla Young Scientist Award (2012) and ISCA Young Scientist Award 2014-15 presented by the Government of India and has published about 45 papers and 3 books. He visited many Universities in country and abroad to deliver lectures and popularize the field of quantum plasma.

Sibarjun Das is a BE student in the Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata. His field of interest includes theoretical physics, astrophysics and computational physics. He has attended numerous national conferences and presented papers. His recent interest is in stellar chemistry and the formation of the universe.

Agniv Chandra is a BTech student of Computer Science and Engineering in the Department of Computer Science and Engineering, Dr. Sudhir Chandra Sur Degree Engineering College, Kolkata. His field of interest includes computer game designing, simulations, CGI, VFX, software designing and computational physics.

Dr. Basudev Ghosh is an associate professor with the Department of Physics, Jadavpur University. Previously he was a reader in ramakrishna Mission Vidyamandira, Belurmath, affiliated to the University of Calcutta. He graduated from University of Burdwan, India (1977), and did his post-graduation from the same university (1979) and topped at both levels. He did his PhD from University of Calcutta (1989). He became a life member of the Indian Physical Society (IPS) and the Plasma Science Society of India (PSSI). His field of interest includes nonlinear waves in plasma. He has published 15 books and about 50 research papers. He is actively involved in teaching for more than 30 years.

Apratim Jash is a BE student in the Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata. He has helped in solving some of the equations in the paper and typesetting the same.