**Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness**

Mohamed M. Ragab, Neveen A. Abdel Raoof, Reham H. Diab

---

**Abstract—Background:** Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. Multitudes of methods have been investigated to reduce DOMS. One of the valuable methods to control DOMS is repeated bout effect (RBE) as a prophylactic method. **Purpose:** To compare the repeated bout effect of submaximal eccentric with maximal isometric contraction on induced DOMS. **Methods:** Sixty normal male volunteers were assigned randomly into three equal groups: Group A (first study group): 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as a prophylactic exercise. Group B (second study group): 20 subjects received maximal isometric contraction on non-dominant elbow flexors as a prophylactic exercise. Group C (control group): 20 subjects did not receive any prophylactic exercises. **Results:** Both submaximal eccentric and maximal isometric contraction on induced DOMS resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. **Conclusion:** Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction produced a greater protective effect against muscle damage induced by maximal eccentric exercise performed 2 days later.

**Keywords—**Delayed onset muscle soreness, maximal isometric peak torque, patient related elbow evaluation scale, repeated bout effect.

I. INTRODUCTION

**Delayed** onset muscle soreness (DOMS) is an exercise-induced phenomenon that is among the most common and recurrent forms of sports injuries [1]. DOMS is the perception of discomfort and pain in the muscles in the days following unaccustomed physical activity, especially when eccentric contractions are involved [2]. An unaccustomed exercise consisting of eccentric contractions induces muscle damage characterized by histological changes observed under light and electron microscopy [3], and symptoms such as muscle weakness, DOMS, increased muscle stiffness and muscle swelling, as well as increase in muscle proteins such as creatine kinase (CK) and myoglobin (Mb) in the blood [4]. Delayed onset muscle soreness is usually not present until 8-24 hours after exercise and peaks between 24 and 48 hours [5]. The symptoms then gradually disappear 5-7 days post exercise, in addition to muscle soreness and pain, functional strength is reduced [6].

One of the symptoms of DOMS presents immediately after eccentric exercise is decrease in maximal force post exercise and in the days following unaccustomed eccentric exercise [7]. It has been suggested that both immediate mechanical disruption of muscle fibers and the accompanying inflammatory response is contributing to the force decline in the days following eccentric exercise [8].

As DOMS is typically triggered by new and unaccustomed exercise, it can be minimized by previous introduction of that exercise known as the repeated bout effect (RBE) [9]. Skeletal muscles quickly adapt with repeated exercise; so, when a subsequent bout of the same or similar eccentric exercise is performed, the changes in the muscle damage markers are attenuated and recovered to the baseline.

The repeated bout effect is accompanied by a shift of the length–tension curve in the direction of longer muscle length because of incorporation of extra sarcomeres in muscle fibers [10]. So it is proposed that there are two shifts in the active length–tension relation of muscle following unaccustomed eccentric exercise, the first shift is due to the presence of damage and the second shift is due to an adaptation response.

Recent studies showed that maximal isometric contractions at a long muscle length would attenuate muscle damage induced by the maximal eccentric exercise [2], and how low-intensity eccentric contractions or maximal isometric contractions performed at different muscle lengths would influence the repeated bout effect [11].

The length of this protective effect may be relatively short lived. Performance of a single eccentric exercise bout has been shown to reduce muscle soreness after a similar exercise bout from 24 hours [12] up to 6 weeks but not beyond 9 weeks [13]. There are many variables that guide the RBE study, such as different types of people, different exercises since its intensity, volume, and induction for being eccentric or isometric, sub maximal or maximum, interval between sessions. Accordingly, the purpose of the current study was to compare...
the repeated bout effect of submaximal eccentric with maximal isometric contraction on the magnitude of eccentric exercise – induce delayed onset muscle soreness.

II. SUBJECTS AND METHODS

A. Subjects

This study was conducted in the isokinetic laboratory at Faculty of Physical Therapy, Cairo University, in the period from June 2014 to November 2014 to compare the repeated bout effect of submaximal eccentric contraction with maximal isometric contraction on induced delayed onset muscle soreness. Participants were selected by using randomized sampling from the postgraduate students of Faculty of Physical Therapy, Cairo University.

Sixty normal male subjects participated in this study and were randomly assigned by closed envelopes method into three groups of equal number: Group (A) “first experimental group”: 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as a prophylactic exercise. Group (B) “second experimental group”: 20 subjects received maximal isometric contraction on non-dominant elbow flexors as a prophylactic exercise. Group (C) “control group”:20 subjects did not receive any prophylactic exercise.

B. Design of the Study

Repeated measure study design was conducted.

C. Selection of Subjects

Sixty normal male volunteers from the postgraduate students of faculty of physical therapy, Cairo University were included and participated in this study after signing an institutionally approved informed consent form prior to data collection. Their age ranged from 20 to 30 years old, they did not suffer from any current arm pain or discomfort, and had the ability to demonstrate full, pain-free range of motion about the elbow joint prior to participation in the study. The exclusion criteria for participants were recent shoulder or elbow operation, using of anti-inflammatory drugs and previous history of muscles, joint or bone injuries of the upper limb.

D. Instrumentations and Tools

1. Isokinetic machine for measuring maximal isometric peak torque of non-dominant elbow flexors.


3. Dumbbells for applying prophylactic exercise on non-dominant elbow flexors.

4. Weight and height scale for measuring subjects’ weight and height.

E. Procedures

The following data were recorded at the beginning of the study (information sheet): Personal data name, height, age, weight, telephone number, Explanation of the whole study for each subject and any possible complication or risk, then the subjects signed a consent form. This study consists of 3 phases: prophylactic exercises, induction of DOMS, measurements before and after induced DOMS.

1. Prophylactic Exercise

The subjects in the first experimental group (A) (n=20) performed submaximal eccentric contraction on the elbow flexors of the non-dominant arm two days prior to maximal eccentric exercise (induction of DOMS) [14].

Each Subject in the study group started to warm up for 5 minutes, After warming up the one repetition maximum through 3 to 5 subject maximum concentric contraction of elbow flexors of the non-dominant arm was estimated [15].

The subjects in the group were sit on a chair and 50 eccentric contractions of 80% 1RM for 5 sets of 10 repetition was done using dumbbell. Each set includes 10 contractions that lower a person's weight from (90°) elbow flexion as starting position to full elbow extension as end position in 3 seconds and At least 2 seconds to reach the next contraction without weights placed in full flexion. One-minute rest was given between each set [16].

The subjects in the second experimental group (B) (n=20) performed maximal isometric contractions on elbow flexors of non-dominant arm two days prior to maximal eccentric exercise (induction of DOMS).

Each subject in the second study group started to warm up for 5 minutes, After warming up the one repetition maximum through 3 to 5 subject maximum concentric contraction was estimated. After that, the subjects in the group were sit on chair and 5 sets of 10 maximal isometric contractions of the elbow flexors was done respectively, at an elbow angle of 20° elbow flexion (full elbow extension = 0°) [17].

The subjects in the third control group (C) (n=20) did not perform any prophylactic exercises.

2. Induction of DOMS

All Subjects were engaged in maximal eccentric contractions protocol on isokinetic dynamometer to induce delayed onset muscle soreness.

The Biodex system was started and then calibration was done prior to each testing session. Each subject was seated upright on a chair with the backrest angle at 90° and his chest and waist were immobilized by straps, placing the upper arm on a padded support that secured the shoulder joint angle at 45° flexion and 0° abduction. The elbow joint was set at 90° with the forearm in a fully supinated position; the axis of rotation of the right elbow (lateral epicondyle of the humerus) was aligned with the axis of rotation of the dynamometer. The load cell assembly was attached to the distal forearm via a wrist cuff and the upper arm was secured in place through the use of Velcro straps.

The eccentric exercise consisted of five sets of six maximal eccentric contractions of the elbow flexors at an angular velocity of 90°/s–1 from a half-flexed position (90°) to a fully extended position on the isokinetic dynamometer [18].

Each contraction lasted for three seconds and was repeated every 10 s during which the isokinetic dynamometer passively
returned the elbow joint to the flexed position at the velocity of 9°·s⁻¹, with a 2-min rest between sets. Subjects were verbally encouraged to maximally resist the movements of the isokinetic dynamometer to extend the elbow joint.

3. Measurements Before and After Induced DOMS

Maximal isometric contraction peak torque of elbow flexors as marker of muscle damage and Elbow pain and disability in daily activities (PREE scale) were measured for each subject before, immediately after and 48 hours after induction of DOMS as comparable measurements.

The method involves maximal voluntary contraction (MVC) of elbow flexors at a fixed joint angle (90°), Subjects were verbally encouraged to perform three maximal contractions, holding each contraction for 5 s and were allowed 5 s of passive rest between each effort. The peak torque of the three contractions was averaged [19].

Elbow pain and disability in daily activities (PREE scale) were measured for each subject through a 20–item questionnaire and subjects rated their level of elbow pain and disability from zero to 10.

F. Statistical Analysis

Descriptive statistics: mean and standard deviation were calculated for (1) Maximal isometric peak torque of elbow flexors and (2) Patient related elbow evaluation scale among the three groups.

A repeated measure analysis of variance (ANOVA) was used to measure statistical differences among the three groups. Comparisons among groups at points in time are made to determine the statistical differences among the three groups in the mean value of the maximal isometric peak torque of elbow flexors and patient related elbow evaluation scale using Tukey’s post-hoc test (Least square difference (LSD) test) was performed (P<0.05).

III. RESULTS

There were no significant differences among the three groups concerning age, weight and height.

A. Results of Maximal Isometric Peak Torque of Elbow Flexors

Repeated measure ANOVA revealed that there was no significant difference among the three groups in maximal isometric peak torque for the pre induction of DOMS value as (F =0.747, P =0.478). While there was significant difference for the immediately after induction of DOMS value as (F=10.276, P =0.0001), and finally there was a significant difference for 48 hours after induction of DOMS value as (F =31.967, P =0.0001).

Post-hoc test was performed to determine the difference among the groups in the mean value of the peak torque. For immediately after induction of DOMS there was a significant difference between groups A and B (mean difference=3.215, P=0.036), between groups A and C (mean difference=11.57, P=0.0001), and finally between groups B and C (mean difference= 8.355, P=0.0001), as shown in Table I and Fig. 1.

For 48 hours after induction of DOMS there was a significant difference between groups A and B (mean difference=3.215, P=0.036), between groups A and C (mean difference=11.57, P=0.0001), and finally between groups B and C (mean difference= 8.355, P=0.0001), as shown in Table I and Fig. 2.

### TABLE I

<table>
<thead>
<tr>
<th>Peak torque</th>
<th>Mean difference</th>
<th>P-value</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Immediately after induction of soreness</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A vs. group B</td>
<td>3.49</td>
<td>0.021</td>
<td>*S</td>
</tr>
<tr>
<td>Group A vs. group C</td>
<td>6.65</td>
<td>0.0001</td>
<td>*S</td>
</tr>
<tr>
<td>Group B vs. group C</td>
<td>3.16</td>
<td>0.036</td>
<td>*S</td>
</tr>
<tr>
<td><strong>48 hrs. after induction of soreness</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A vs. group C</td>
<td>11.57</td>
<td>0.0001</td>
<td>*S</td>
</tr>
<tr>
<td>Group B vs. group C</td>
<td>8.35</td>
<td>0.0001</td>
<td>*S</td>
</tr>
</tbody>
</table>

*P- Value: Probability Value *S: Significant

Fig. 1 Post-Hoc Test for Peak Torque: Immediately After Induction of DOMS for Groups A, B, and C

Fig. 2 Post-Hoc Test for Peak Torque: 48 Hours after Induction of DOMS for Groups A, B, and C
B. Results of Patient Related Elbow Evaluation Scale

Repeated measure ANOVA revealed that there was no significant difference among the three groups in the PREE Scale for the pre induction of DOMS value ($F=0.290, P=0.750$). While there was a significant difference for the immediately after induction of DOMS value ($F=11.117, P=0.0001$), and finally, there was a significant difference for 48 hours after induction of DOMS value ($F=94.305, P=0.0001$).

Post-hoc test was performed to determine the difference among the three groups in the mean value of the PREE scale. For immediately after induction of DOMS there was a significant difference between groups A and B (mean difference=-6.30, $P=0.019$), between groups A and C (mean difference=-12.35, $P=0.0001$), and finally, between groups B and C (mean difference=-6.05, $P=0.025$), as shown in Table II and Fig. 3.

For 48 hours after induction of DOMS there was a significant difference between groups A and B (mean difference=-6.5, $P=0.016$), between groups A and C (mean difference=-33.75, $P=0.0001$), and finally between groups B and C (mean difference=-27.25, $P=0.036$), as shown in Table II and Fig. 4.

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>POST HOC TEST AMONG THE THREE GROUPS FOR PREE SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREE SCALE</td>
<td>Mean difference</td>
</tr>
<tr>
<td>Immediately after induction of DOMS</td>
<td>Group A vs. group B</td>
</tr>
<tr>
<td></td>
<td>Group A vs. group C</td>
</tr>
<tr>
<td></td>
<td>Group B vs. group C</td>
</tr>
<tr>
<td>48 hours after induction of DOMS</td>
<td>Group A vs. group B</td>
</tr>
<tr>
<td></td>
<td>Group A vs. group C</td>
</tr>
<tr>
<td></td>
<td>Group B vs. group C</td>
</tr>
</tbody>
</table>

$P$-Value: Probability Value $S$: Significant

Fig. 3 Post-hoc Test for PREE scale: immediately after induction of DOMS for groups A, B, and C

Fig. 4 Post-hoc Test for PREE scale: 48 hours after induction of DOMS for groups A, B, and C

IV. DISCUSSION

The findings of the current study revealed that submaximal eccentric group (A) was more effective than control group (C) which was agreed by [20] which reported that muscle function was improved and muscle pain was lower after second attack of maximal eccentric exercises ($p < 0.05$) when a bout of eccentric exercises performed prior to maximal eccentric exercises.

These results also supported by [21] which investigated whether a repeated series of various settings would result in difference in magnitude of muscle damage after the first and second exercise sessions. Ten untrained men underwent two sessions of eccentric exercise of the elbow flexors in each arm (4 sets in total) with sessions separated by 4 weeks. The results showed that range of motion (ROM), cross-sectional area of the biceps and DOMS changed significantly ($p < 0.05$) after exercise.

In addition, [22] showed that changes in indirect markers of muscle damage such as muscle soreness and pain were attenuated after the second bout, which was performed 2 weeks after an initial bout. It has also been reported that submaximal non-damaging eccentric contractions conferred protective effect against higher intensity eccentric contractions.

Additionally, our results agreed with [23] which hypothesized that an eccentric exercise session with a high or low volume protects against muscle damage after a high volume in the series and subsequent adaptation. Sixteen men performed either maximum 45 eccentric contractions (ECC45) or 10 maximum eccentric contractions (ECC10) using the elbow flexors. This was followed by a session of ECC45 two weeks later, session of maximum ECC45 induced more damage than an initial attack of maximum ECC10, however, both conferred protection from subsequent ECC45 maximum eccentric contractions and reduced muscle pain and soreness.

Also, our results agreed with [24] which compared the changes in indirect markers of muscle damage after eccentric exercise of the elbow flexors with different eccentric actions, the results showed that maximal isometric force (MIF)
decreased significantly \((p<0.01)\) to approximately 60% of pre-
exercise levels immediately after initial eccentric session and
recovery of about 70% three days later for all groups after
second eccentric session, this suggested that repeated bout of
eccentric exercise enhanced the recovery of muscle damage
after second session of maximal eccentric exercise performed
3 days later regardless number of exercise repetitions in the
initial session.

These finding agreed with those obtained by [25] which
reported that eccentric contractions at long muscle lengths
induce greater muscle damage than eccentric contractions at
short muscle lengths, they found that the eccentric exercise at
the long muscle length \((100-180\degree)\), full extension: \(180\degree\)
produced a greater protective effect against muscle damage
induced by maximal eccentric exercise performed 2 weeks
later.

In addition, the findings revealed that maximal isometric
group \((B)\) was more effective than control group \((C)\) which
was agreed by [26] which have recently showed that the
extracellular matrix is strengthened following 180 isometric
contractions evoked by electrical stimulation, and that muscle
soreness in the subsequent bout that was performed 28 days
later was attenuated.

This concept was supported by [27] which stated that
maximal isometric contractions at a long muscle length \((160\degree)\)
but not at a short muscle length \((90\degree)\) conferred protective
effect against maximal eccentric exercise performed 2 weeks
later. This suggests that not only eccentric contractions but
also isometric contractions at a long muscle length produce
protective effect against muscle damage induced by eccentric
contractions.

These results were also supported by [28] which reported
that two sets of 25 maximal isometric contractions of the
elbow flexors at a long muscle length \((40\degree)\) resulted in decreases in maximal voluntary isometric strength
loss and relaxed elbow joint angle. Furthermore, [29] reported
that 50 maximal voluntary isometric contractions of the elbow
flexors at the elbow joint angle of \(140\degree\) resulted in a
significant reduction of maximal voluntary contraction \((MVC)\)
strength loss \((16\%\) at \(140\degree\) elbow angle at \(24\) h).

Finally, the findings revealed that submaximal eccentric
group \((A)\) was more effective than maximal isometric group
\((B)\) which was agreed by [17] which investigated how
submaximal intensity eccentric contractions or maximal
isometric contractions performed at different muscle lengths
would influence the repeated bout effect. Subjects were placed
into one of five groups and during the first exercise bout
performed 30 contractions of either maximal eccentric actions,
10% of maximal voluntary isometric contractions \((MVIC)\)
eccentric exercise, 20% MVIC eccentric exercise, 90 degrees
maximal isometric contractions, or 20 degrees maximal
isometric contractions. Three weeks later all groups performed
maximal eccentric actions. The greatest protection occurred
when the maximal eccentric actions \((64-98\%)\) were performed
at the first bout. After that, the largest protection was produced
by the 20-degree maximal isometric contractions \((27-63\%)\)
then 20% MVC eccentric actions \((17-55\%)\), 10% MVC
eccentric contractions \((0%-36\%)\) and lastly the 90-degree
maximal isometric contractions \((0%-11\%)\).

The current results are in consistent with those reported by
[11] which documented that one of the potential cellular
adaptations for the protective effect is a longitudinal addition
of sarcomeres and this theory was indirectly supported by a
shift in optimum angle to a longer muscle length. However,
the maximal isometric contractions in previous studies did not
shift the peak torque (optimum) angle, If a shift of peak torque
angle is a sensitive marker of changes in sarcomere number in
series, the longitudinal addition of sarcomeres does not appear
to be occurred with isometric contractions, so the submaximal
eccentric exercises was more effective the maximal isometric
contractions in prevention of induced DOMS. This is also
supported by [30] which found that both maximal voluntary
and electrical stimulation-evoked isometric contractions of the
elbow flexors at a long muscle length resulted in moderate but
significant protection of muscle damage but less than high
intensity eccentric contractions, they demonstrated that
repeated maximal voluntary isometric contractions at a long
muscle length \((160\degree)\) resulted in small but significant
decreases in MVC strength and ROM and increases in muscle
soreness and tenderness.

In addition, [14] reported that repeated bout of non-
damaging low intensity eccentric or maximal isometric
exercises can provide a protective effect against muscle
damage but less than maximal high intensity eccentric
exercise. It seems that the combination of the first 40% ECC
bout that resulted in minor damage and the second to fourth
40% ECC bouts that resulted in little or no damage provided
the same magnitude of protective effect as one bout of 100% ECC.
This is supported by [31] which reported that eccentric
or lengthening contractions and muscle fiber degeneration are
not required to induce protection against eccentric-induced
muscle injury. This demonstrates that an acute non-
eccentrically biased exercise of a low stimulus can induce
adequate adaptation against subsequent injurious eccentric
exercises but with less protection effect than submaximal
eccentric exercises. Thus, acute exercises of non-eccentrically
biased or having the same amounts of eccentric as maximal
isometric contraction can be performed to induce protection in
the skeletal muscles. This finding makes the stimulus of these
non-eccentrically biased exercises appropriate given that less
muscle soreness was reported in the repeated exercise. Thus,
the repeated bout effect can be produced with non-injurious
and low stimulus acute exercises. This approach will reduce
muscle soreness and perhaps, as well motivate a sedentary
person starting any exercise program to improve physical
fitness.

Unlike our study, [11] reported that the effect of maximal
isometric contractions on maximal eccentric contraction-
induced muscle damage is stronger than that of submaximal
eccentric contractions, because the smaller number of
isometric contractions \((n =10)\) conferred a protective effect
similar to that of a larger number of eccentric contractions \((n =30)\).

Contrasting these studies, [32] demonstrated that both
Creatine Kinase and DOMS had no significant differences in RBE, with an interval of two days between the first session and the second.

In contrast to the previous results, [33] reported that first session of eccentric exercise of the elbow flexors performed three days prior to second session of maximal eccentric exercise did not affect changes in indicators of muscle damage. ECC1and ECC2 resulted in significant reductions in maximal isometric force and ROM, and development of DOMS for all groups.

These differences might be related to the large sample size in the current study while small sample size in the previous study, also It might be that intensity of eccentric contractions in previous study was not enough to produce protection effect, also eccentric exercise may not be performed at long muscle length in previous studies, while in the current study the submaximal eccentric exercise at 80% of maximal power was used and subjects performed eccentric contractions at long muscle length from 90° elbow flexion to full elbow extension which produced more protection against muscle damage.

V. CONCLUSION

This study was repeated measures study design, the results of this study can conclude the repeated bout effect of submaximal eccentric contractions with 80% of maximal power and maximal isometric contractions at long muscle length performed two days prior to maximal eccentric exercise session were effective in prevention of DOMS, but submaximal eccentric contractions produced a greater protective effect against muscle damage induced by maximal eccentric exercise.

ACKNOWLEDGMENT

The authors thank Shimaa Taha for her assistance with data collection and analysis. The authors declare that they have no potential conflict of interest.

REFERENCES


