Efficient Variable Modulation Scheme Based on Codebook in the MIMO-OFDM System

Yong-Jun Kim, Jae-Hyun Ro, Chang-Bin Ha, Hyoung-Kyu Song

Abstract—Because current wireless communication requires high reliability in a limited bandwidth environment, this paper proposes the variable modulation scheme based on the codebook. The variable modulation scheme adjusts transmission power using the codebook in accordance with channel state. Also, if the codebook is composed of many bits, the reliability is more improved by the proposed scheme. The simulation results show that the performance of proposed scheme has better reliability than the performance of conventional scheme.

Keywords—MIMO-OFDM, variable modulation, codebook, channel state.

I. INTRODUCTION

CURRENt wireless communication system is required in many fields and the demand for wireless communication services has been increasing. In order to meet the demand, the orthogonal frequency division multiplexing (OFDM) and multiple input multiple output (MIMO) system are required in the wireless communication. The OFDM system has high spectral efficiency compared to the single carrier system [1]-[5]. Also, the MIMO system can achieve proportionally high throughput in accordance with the number of antennas in contrast with single input single output (SISO) system [6]-[10].

As representative MIMO architecture, there is the vertical Bell laboratories layered space time (V-BLAST) that sequentially removes interference from other antennas by unit of spatial stream [11]-[15]. The zero forcing (ZF) is one of the easy detection schemes based on the V-BLAST [16],[17]. The QR decomposition M (QRD-M) has high reliability compared to the ZF [18]-[20]. However, the QRD-M has remarkably high complexity compared to the ZF.

In order to improve reliability of the system, the best method is to assign a lot of transmission power. However, because transmission power is specified on the system, transmission power can not be increased for the reliability of the system. For improvement of reliability, this paper proposes the variable modulation scheme based on channel state.

This paper is composed as follows. Section II shows the system model of the proposed scheme. Section III explains the generation process for the feedback information and the codebook. Section IV shows simulation results of the proposed scheme and the conventional scheme. This paper is concluded in section IV.

Yong-Jun Kim, Jae-Hyun Ro, Chang-Bin Ha and Hyoung-Kyu Song are with uT Communication Research Institute, Sejong University, Seoul, Korea. (corresponding author to provide phone: +82-2-3408-3890; fax: +82-2-3409-4264 e-mail: songhk@sejong.ac.kr)

II. SYSTEM MODEL

Fig. 1 shows system model of the proposed scheme in MIMO-OFDM system. Transmitter simultaneously sends multiple data streams using multiple antennas in contrast with SISO system. The feedback information is generated based on the codebook in accordance with channel state information (CSI). The transmitting power is reallocated in accordance with feedback information by unit of subcarrier.

For generation of feedback information, the transmitter sends training symbol to the receiver. The channel state is estimated by the training symbol at the receiver. The receiver generates feedback information in accordance with estimated CSI and the transmitter sends data stream with adjusted power to the receiver.

The received signal with adjusted power is as follows,

$$ Y = \sum_{n=1}^{C_t} W_n X_n H_n + N_n, $$

(1)

where C_t is the number of subcarriers, X_n is the symbol on the n-th subcarrier, H_n is the n-th subchannel, and N_n is the Gaussian noise at the n-th subchannel. W_n is the normalization factor for the n-th subcarrier.

III. PROPOSED SCHEME

The proposed scheme is made up of procedure of 3 steps. The first step is procedure for generation of the codebook. The weighting factor of the codebook is amplitude of channel...
between maximum value and minimum value. The minimum value of the channel is zero. However, the maximum value of the channel is variable. The maximum value is assumed as the statistical value based on cumulative distribution function (CDF). The scope for channel state of the codebook is uniformly divided in accordance with the number of assigned bits. For example, the 2-bit codebook is made up of 4 parts. The 5-bit codebook is made up of 32 parts. The weighing factor of the codebook is specified as the inverse of mean value for scope of the channel state.

The second step is procedure for generation of feedback information. The training symbol is sent by the transmitter to the receiver. The receiver estimates channel state using the training symbol and generates the feedback information in accordance with the codebook. The generated feedback information is sent to the transmitter. The transmitter reallocates transmission power in accordance with the codebook using the received feedback information. If channel state at a specific subcarrier is bad, the transmitter allocates high power in accordance with the codebook. In contrast, if channel state at a specific subcarrier is good, the transmitter allocates low power in accordance with the codebook. The adjusted data stream by using the variable modulation for power reallocation is sent to the receiver. For demodulation of the received data, the receiver compensates the channel with the weighing factor based on the codebook.

The final step is the normalization procedure for transmission power. The amount of used transmission power by the proposed scheme is same as the conventional scheme. The normalization factor W_k for the k-th subcarrier is as follows,

$$W_k = \frac{\text{The number of the subcarriers}}{\frac{P(C_k)}{P(C)}} \times w_k,$$

where $P(C_k)$ is the transmission power on the k-th subcarrier and $P(C)$ is the total used transmission power on the all subcarriers. w_k is the weighting factor for the k-th subcarrier.

IV. Simulation Results

In this section, the improved performance is verified by bit error rate (BER) for the proposed scheme and the conventional scheme. The simulation results show the difference of the performance in accordance with the number of assigned bit at the codebook. The 2-bit codebook and the 5-bit codebook are used for simulation. The parameters for the proposed scheme are as follows: the number of antennas is 2x2, the fast Fourier transform (FFT) size is 256, the cyclic prefix size is 64 and the modulation scheme is 16 quadrature amplitude modulation (QAM). The assumed channel is a Rayleigh fading with 7 path and the detection scheme is assumed as the ZF.
Fig. 2 shows BER performance in the 2x2 MIMO-OFDM system. Because of the large range for each scope of the codebook, the 2-bit codebook is difficult to assign the correct weighting factor in accordance with the channel state. From simulation result, BER performance of the proposed scheme using the 2-bit codebook is similar to the conventional scheme.

Fig. 3 shows BER performance in the 2x2 MIMO-OFDM system. The simulation for Fig. 3 uses the 5-bit codebook. Because of the small range for each scope of the codebook, the 5-bit codebook can assign the correct weighting factor compared to the 2-bit codebook. From simulation result, the proposed scheme using the 5-bit codebook has about 1.5dB signal to noise ratio (SNR) gain compared to the conventional scheme. As a result, if the number of assigned bit for the codebook is increased, it is verified that the reliability is increased by the proposed scheme in the MIMO-OFDM system.

V. CONCLUSION

This paper proposes the efficient variable modulation scheme based on the codebook for enhanced reliability in the MIMO-OFDM system. The proposed scheme adjusts
transmission power by unit of subcarrier in accordance with channel state. The simulation results show that the proposed scheme has more better BER performance than the conventional scheme. Also, if the codebook is composed of many bits, the reliability is more improved by the proposed scheme.

ACKNOWLEDGMENT
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning(No. 2013R1A2A2A01067708) and the MSIP(Ministry of Science, ICT and Future Planning), Korea, under the C-ITRC(Convergence Information Technology Research Center) (IITP-2015-H8601-15-1008) supervised by the IITP(Institute for Information & Communications Technology Promotion)

REFERENCES