Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes

Salem El-tohami Ashoor

Abstract—Here, we have shown the reaction of \([\text{Cr}(\text{ArN(CH}_3)_2\text{NAr})\text{Cl}_2]\) (1) where \((\text{Ar} = 2,6-\text{Pr}_3\text{C}_6\text{H}_3)\) and in presence of \(\text{NaCp}\) (2) (\(\text{Cp} = \text{C}_5\text{H}_5\) = cyclopentadien) with a center coordination \(\eta^5\) interaction between Cp as co-ligand and chromium metal center, for optimization we used density functional theory (DFT), under methods, explicitly including electrons correlations, for the final calculations as MB3LYP (Becke) (Lee-Yang-Parr) level of theory we used to obtain more exact results. This complex was calculated as electronic energy for molecular system, because the calculation accounting all electrons correlations interactions. The optimised of \([\text{Cr}(\text{ArN(CH}_3)_2\text{NAr})\text{Cl}_2]\) \((\text{Ar} = 2,6-\text{Pr}_3\text{C}_6\text{H}_3\) and \(\text{Cp} = \text{C}_5\text{H}_5\) was found to be thermally stable. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Keywords—Chromium (III) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO.

I. INTRODUCTION

The Chromium complexes have played a special role in the history of olefin polymerization [1]-[3] and also dimer of chromium complexes has been investigated, also synthetic computational investigations by Power et al and other groups, those were followed at low-valent metals (i.e., with \(d^2\) and \(d^6\) configuration). [4], [5]

To date, most of the Group 4 and Group 5 catalysts for polymerisation have been supported by one or more cyclopentadienyl rings, [6]-[11] but there is a growing interest in the use of ancillary, non cyclopentadienyl ligands, such as chelating diamides or diamido donor ligands. [12], [13] Yi.

The syntheses of Chromium dioxo with Imido via treatment of \([\text{Cr}(\text{ArN(CH}_3)_2\text{NAr})\text{Cl}_2]\) \((\text{Ar} = 2,6-\text{Pr}_3\text{C}_6\text{H}_3\) and \(\text{Cp} = \text{C}_5\text{H}_5\) in presence of \(\text{NaCp}\) at

II. METHOD

A complex of \([\text{Cr}(\text{ArN(CH}_3)_2\text{NAr})\text{Cl}_2]\) where \((\text{Ar} = 2,6-\text{Pr}_3\text{C}_6\text{H}_3\) and \(\text{Cp} = \text{C}_5\text{H}_5\) \((3)\) as mono-complex, can be made via the reaction of \([\text{Cr}(\text{ArN(CH}_3)_2\text{NAr})\text{Cl}_2]\) \((1)\) where \((\text{Ar} = 2,6-\text{Pr}_3\text{C}_6\text{H}_3\) and \(\text{Cp} = \text{C}_5\text{H}_5\) \((2)\) in presence of \(\text{NaCp}\) at Fig. 1

S. El-t. Ashoor is with the Department of Chemistry, Faculty of Science Misurata University, P.Box, 1202 Misurata Libya (phone: +21891-2127187; fax: +218-516-660520; e-mail: salem.elashoor@7ou.edu.ly).
III. RESULT AND DISCUSSION

Recently a whole issue of Chemical Reviews dedicated to computational transition metal chemistry showed how the introduction of DFT has revolutionized this field. Our spin-unrestricted carried out under BP86/TZVP calculations on the staggered and eclipsed model of \([\text{Cr(}\text{ArN(CH}_2\text{)}_3\text{NAr)}_2(\eta^5-\text{Cp})]\) \((\text{Ar} = 2,6-\text{Pr}_2\text{C}_6\text{H}_3\text{ and Cp} = \text{C}_5\text{H}_5)\) is in agreement with the DFT calculations. The DFT structure confirmed the constitution of 3, which is shows Cs symmetry. There is a mirror plane that divides the N(1), C(26) and N(2),C(1) ligand through the chromium centre (C(27)-Cr-Cp). The nitrogen donors chelate around the chromium centre as expected, and the metal centre resides in a distorted tetrahedral environment defined by N, N’ and Cp (Fig. 2).

The chelate bite angle, defined by the N(1)-Cr-N(2) bond angle of 97.004° derives from the short three-carbon bridge. The N(2)-Cr-Cp bond angle is 108.546°, N(1)-Cr-Cp, N(2)-Cr-N(1), Cr-N(2)-C(1) and Cr-N(1)-C(7) bonds angles are 102.007°, 95.840°, 119.971 and 119.971 respectively. The structure of 3 is shown in Fig. 3.

The intramolecular N- bonds showed the coordination sphere around the metal centre in case of six-membered ring as shown (Fig. 4.)

The inclusion of the three methylene bridge unit in 3 substantially opens the coordination sphere around the metal centre, as reflected by the greater flexibility of chelate bite angles, is 348.478° around the metal centre < N(1)-Cr-N(2) as compared to the perversely work \([18]\), has been shown in Table II.

Again supporting information of the frontier orbitals of HOMO and LUMO of the complex \([\text{Cr(}\text{ArN(CH}_2\text{)}_3\text{NAr)}_2(\eta^5-\text{Cp})]\) \((\text{Ar} = 2,6-\text{Pr}_2\text{C}_6\text{H}_3\text{ and Cp} = \text{C}_5\text{H}_5)\), via the Dewar-Chatt-Duncanson model \([19]\), as a basis of the molecular orbital (MO) analysis was showed the correlation between the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO is shown in Fig. 5.

The highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) and the energy gap of HOMO and LUMO for compound 3 has been shown in Fig. 6.
The most common of analysis method is Mulliken population, because it is one of simplest method. [20] The main key component is the matrix composed of the elements $D_{\alpha\beta}$, the diagonal elements $D_{\alpha\alpha}$ give the interaction of an AO with itself (summed over all MOs). The overlap population of one AO with another can be via off-diagonal elements. [21] The half the overlap population in the Mulliken analysis is assigned to each contributing orbital, giving the total population of each AO, the gross atomic population can be optioned via the summing over all the atomic orbitals on a specific atom. [22], [23]

The AO of Chromium (III) cyclopentadienyl complexes calculated are given in Table III. From the point that chromium (III) has a configuration $[\text{Ar}]^{18}3d^3$, this is should only be 3e at the 3d atomic orbitals, but there is obviously more than 3e in the outer orbital of metal center table 3. This extra population comes from the carbon and nitrogen atoms which should each have 4e and 5e, respectively; this is in fact show a depletion of electron density. Summing all the populations for all the orbitals on a single atom as first step, then subtracting the nuclear charge gives the partial charge on each atom. [22], [23]

The most positive charge and spin density are in chromium (III) atom center as expected; this is as Lewis acid to electron pair acceptor the extra electron density. Again, α and β configuration of the electronics are in S, P and D orbitals of the complex 3 are presented in Fig. 8.

IV. Conclusion

The computational chemistry presented in this paper shows the possible to produce chromium (III) complexes incorporating the chelating diamido cyclopentadienyl $[\text{Cr}(\text{ArN(CH}_3)_3\text{NAr})_2(\eta^5\text{-Cp})]$ (Ar = 2,6-$\text{Pr}_2\text{C}_6\text{H}_3$ and Cp = C$_5$H$_5$) from optimization information, via the Dewar-Chatt-

TABLE III

<table>
<thead>
<tr>
<th>Atom</th>
<th>Charge</th>
<th>Spin density</th>
<th>S</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>-0.7673</td>
<td>-0.0388</td>
<td>A: 0.9079</td>
<td>1.923</td>
<td>0.0333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B: 0.9204</td>
<td>1.9554</td>
<td>0.0272</td>
</tr>
<tr>
<td>N</td>
<td>-0.7673</td>
<td>-0.0388</td>
<td>A: 0.9079</td>
<td>1.923</td>
<td>0.0333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B: 0.9204</td>
<td>1.9554</td>
<td>0.0272</td>
</tr>
<tr>
<td>Cr</td>
<td>0.8928</td>
<td>3.1685</td>
<td>A: 0.2033</td>
<td>0.2057</td>
<td>3.7289</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B: 0.0736</td>
<td>0.089</td>
<td>0.8068</td>
</tr>
<tr>
<td>C</td>
<td>-0.0802</td>
<td>0.0023</td>
<td>A: 0.7116</td>
<td>1.2963</td>
<td>0.0334</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B: 0.7105</td>
<td>1.2955</td>
<td>0.033</td>
</tr>
<tr>
<td>C</td>
<td>-0.1017</td>
<td>-0.0524</td>
<td>A: 0.7125</td>
<td>1.2774</td>
<td>0.0348</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B: 0.716</td>
<td>1.3282</td>
<td>0.0329</td>
</tr>
<tr>
<td>C</td>
<td>-0.1011</td>
<td>-0.0358</td>
<td>A: 0.7135</td>
<td>1.2848</td>
<td>0.0343</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B: 0.7157</td>
<td>1.3199</td>
<td>0.0329</td>
</tr>
<tr>
<td>C</td>
<td>-0.0802</td>
<td>0.0023</td>
<td>A: 0.7116</td>
<td>1.2963</td>
<td>0.0334</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B: 0.7105</td>
<td>1.2955</td>
<td>0.033</td>
</tr>
<tr>
<td>C</td>
<td>-0.1011</td>
<td>-0.0358</td>
<td>A: 0.7135</td>
<td>1.2848</td>
<td>0.0334</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B: 0.7157</td>
<td>1.3199</td>
<td>0.0329</td>
</tr>
</tbody>
</table>

The correlation between charge and spin density of the main atoms of the ligand and metal center is shown in Fig. 7.

![Fig. 5 Frontier orbitals of HOMO and LUMO of 3](image1)

![Fig. 6 HOMO and LUMO of orbitals α and β](image2)

![Fig. 7 The correlation between charge and spin density of 3](image3)

![Fig. 8 The correlation of the electronics is in S& P and D of 3](image4)
Duncanson model, as a basis of the molecular orbital (MO) analysis was showed the correlation between the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) has been showed, plus the energy diagram of the complex.

By using Mulliken population as indicate of Chromium(III) cyclopentadienyl the charges were found at 0.8928 for chromium and -0.7673 for each nitrogen atoms, from this point the overall more electron-rich nitrogen atoms can donated electrons density to from coordination bond to the less electron-rich chromium center atom leaving them with sigma and coordination bonds.

ACKNOWLEDGMENTS

The author thanks Chemistry department, Oxford, England University and Chemistry department, Misurata University, Libya.

REFERENCES

S. El-t. Ashoor is Associate Professor of Inorganic Chemistry at Misurata University, Libya. He received his MSc. degree in Chemistry in 1997 at Misurata University. He was graduated Ph.D. in Inorganic Chemistry in 2005 at Sussex University, England. He has been attained as academic research at chemistry department- Oxford University, England in 2013.