
 

 

 
Abstract—The increase of technogenic and natural accidents, 

accompanied by air pollution, for example, by combustion products, 
leads to the necessity of respiratory protection. 

This work is devoted to the development of a calorimetric method 
and a device which allows investigating quickly the kinetics of 
carbon dioxide sorption by chemisorbents on the base of potassium 
superoxide in order to assess the protective properties of respiratory 
protective closed circuit apparatus. 

The features of the traditional approach for determining the 
sorption properties in a thin layer of chemisorbent are described, as 
well as methods and devices, which can be used for the sorption 
kinetics study. 

The authors developed an approach (as opposed to the traditional 
approach) based on the power measurement of internal heat sources 
in the chemisorbent layer. The emergence of the heat sources is a 
result of exothermic reaction of carbon dioxide sorption. This 
approach eliminates the necessity of chemical analysis of samples 
and can significantly reduce the time and material expenses during 
chemisorbents testing. 

Error of determining the volume fraction of adsorbed carbon 
dioxide by the developed method does not exceed 12%. Taking into 
account the efficiency of the method, we consider that it is a good 
alternative to traditional methods of chemical analysis under the 
assessment of the protection sorbents quality. 
 

Keywords—Carbon dioxide chemisorption, exothermic reaction, 
internal heat sources, respiratory protective apparatus. 

I. INTRODUCTION 

ORBENTS based on potassium are used in respiratory 
protective apparatus for carbon dioxide adsorption. The 

protection time of these apparatus depends on the carbon 
dioxide sorption kinetics, that’s why a study on the carbon 
dioxide chemisorption kinetics is carried out before backfilling 
the sorbent into the protective apparatus [1], [2]. For this 
purpose, a sample of the sorbent is taken. A gas mixture 
containing sorbate (carbon dioxide) is blown through the 
sample during a fixed time. Then, a chemical analysis of the 
adsorbed CO2 concentration is conducted. Similar experiments 
are performed with several samples at varying duration of 
blowing. This approach requires a significant amount of time 
(5-6 hours). 

The operational methods and tools that can be applied for 
the investigation of the carbon dioxide sorption kinetics are 
known from literature. Tools for its implementation are 
calorimeters. Calorimeters, based on the measurement of the 
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heat flux power at a constant temperature or at a constant 
heating rate (Calvet type calorimeter) are widely used to study 
the kinetics of chemical reactions [3]-[7]. One problem of 
using such calorimeters to study the kinetics of CO2 sorption 
is the complexity of recreating the conditions of the process 
directly in the calorimeter. 

In order to decrease the time of the experiment, authors of 
the paper developed a method and a device for studying the 
carbon dioxide sorption by chemisorbents based on the 
potassium superoxide. 

II. METHOD AND MATHEMATICAL MODELING 

We consider the chemisorbent layer with thickness h (Fig. 
1) through which the gas mixture containing sorbate is blown. 
At the same time with the gas flow the quantity of heat is 
supplied. The internal heat sources act in the layer, as a result 
of exothermic reaction of sorption. The volumetric power of 
these sources varies with time. The quantity of heat is moved 
out with the gas flow. The internal heat sources power is 
naturally related to the rate of the carbon dioxide 
chemisorption and can be described by (8) 
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where φ – volume fraction of adsorbed СО2 in the volume of 
sorbent, (m3 of СО2)/(m

3 of sorbent); 
2CO  - the average 

density of the carbon dioxide at the temperature of the 

measurement, kg/m 3; H  - the total thermal effect of chemical 

reactions of carbon dioxide chemisorption which are described 
by: 
 

2КO2 + H2O2КOH + (3/2)O2;     (2) 
 

2КOH + CO2К2CO3 + H2O;     (3) 
 

2КO2 + CO2К2CO3 + (3/2)O2.     (4) 

 

H is equal 4200±506 J/g СО2 for the chemisorbents on the 

base of potassium superoxide [9]. 
The differential heat transfer equation for the chemisorbent 

layer [8]: 
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and 2% concentrations. The limit capacity 0  of the carbon 

dioxide for the chemisorbent depends little on concentration. 
The developed setup provides the possibility of studying the 

effect of temperature, the carbon dioxide concentration in the 
gas mixture, the humidity of the gas mixture on capacity 
properties of chemisorbents (chemisorbent capacity for carbon 
dioxide) and the rate of carbon dioxide adsorption. 

The setup can be used for testing superoxides of alkali 
metals in the range of temperature from room to 100 °C 
(Table I: bulk density 1300 kg/m3, grain size 2–3 mm; Table 
II: CO2 concentration 4%). The test requires a small amount of 

chemisorbent. It allows using the measuring setup to predict 
the operation quality of newly synthesized chemisorbents as a 
part of collective and personal protective apparatus. 

Experimental results show that the values of the carbon 
dioxide volume fraction adsorbed by the sorbent and measured 
by the thermal method and the traditional chemical method 
differ from each other by not more than 12 %. Taking into 
account the efficiency of the thermal method, it can be 
considered as a good alternative to traditional chemical 
methods for investigating the properties of potassium 
superoxide chemisorbents. 

 
TABLE I 

TESTING THE CHEMISORBENT ON THE BASE OF КО2 AT THE TEMPERATURE 99 °C 

The time of 
 blowing , min 

CO2 concentration 1% CO2 concentration 2% CO2 concentration 4% 

The moisture content in the gas mixture, kg/(kg of dry air) 

0.007 0.013 0.026 0.007 0.013 0.026 0.007 0.013 0.026 
 , (m3 of СО2)/(m

3 of sorbent) 

5 41 43 33 53 57 44 71 60 68 

13 59 61 56 75 75 60 97 107 86 

21 81 87 71 94 94 88 110 115 105 

41 110 114 88 115 112 98 129 132 117 

61 135 132 97 116 126 104 141 141 146 

91 138 143 97 125 127 105 144 144 145 

φ0, (m
3 of СО2)/(m

3 of sorbent) 178 140 178 178 127 178 178 144 178 

β, 1/s 5.0 10 5.0 5.0 6.6 5.0 5.0 5.0 5.0 

 
TABLE II 

TESTING THE CHEMISORBENT ON THE BASE OF КО2 AT THE TEMPERATURE 25 °C 

The time of 
 blowing , min 

Bulk density 1100 kg/m3 Bulk density 1300 kg/m3 Bulk density 1650 kg/m3 

The moisture content in the gas mixture, kg/(kg of dry air) 

0.007 0.013 0.026 0.007 0.013 0.007 0.026 
 , (m3 of СО2)/(m

3 of sorbent) 

5 44 63 89 43 71 34 43 

13 62 91 113 65 96 47 57 

21 82 114 133 89 119 52 78 

41 111 156 162 127 161 73 14 

61 127 174 177 136 183 89 188 

91 134 193 - 146 207 106 - 

φ0, (m
3 of СО2)/(m

3 of sorbent) 137 192 178 145 206 106 180 

β, 1/s 2.3 3.2 5.0 2.5 3.4 3.3 5.8
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