Matrix Converter Fed Brushless DC Motor Using Field Programmable Gate Array

P. Subha Karuvelam, M. Rajaram

Abstract—Brushless DC motors (BLDC) are widely used in industrial areas. The BLDC motors are driven either by indirect AC-AC converters or by direct AC-AC converters. Direct AC-AC converters i.e. matrix converters are used in this paper to drive the three phase BLDC motor and it eliminates the bulky DC link energy storage element. A matrix converter converts the AC power supply to an AC voltage of variable amplitude and variable frequency. A control technique is designed to generate the switching pulses for the three phase matrix converter. For the control of speed of the BLDC motor a separate PI controller and Fuzzy Logic Controller (FLC) are designed and a hysteresis current controller is also designed for the control of motor torque. The control schemes are designed and tested separately. The simulation results of both the schemes are compared and contrasted in this paper. The results show that the fuzzy logic control scheme outperforms the PI control scheme in terms of dynamic performance of the BLDC motor. Simulation results are validated with the experimental results.

Keywords—Fuzzy logic controller, matrix converter, permanent magnet brushless DC motor, PI controller.

I. INTRODUCTION

THE Brushless DC Motor has some advantages over the DC motor and Induction motor. Some of them are: high power density, reliability, and simple control, less maintenance, high dynamic response, longer life span, and low noise, absence of mechanical commutator and brushes and better speed-torque characteristics [1]-[3]. The BLDC motors are increasingly used in computer, automotive, aerospace applications etc. The BLDC motor has permanent magnet as rotor, trapezoidal back electromotive force, and rectangular stator current for constant torque [4]. The motor is driven based on the feedback of rotor position obtained at every 60 electrical degrees [1]-[3]. The BLDC motors are generally controlled by PWM based voltage source inverter. Except automobile applications, the predominant control scheme used for the BLDC motor is to convert the available AC source into the required DC which is a two stage conversion (AC-DC and DC-AC) [5]. In this conventional technique, the diode bridge rectifier (AC-DC) produces high harmonics in the input current and also this technique needs an energy storage element in between two stages. Bulky and limited life span capacitors are used as DC link storage element than an inductor, subsequently the efficiency of the overall system is reduced and power quality issues arises. To eliminate these drawbacks, matrix converters are used to drive the motor instead of two stage converters [6].

Matrix converter is a single stage converter but a virtual DC link is obtained by properly chopping the input voltage [7]. Different types of matrix converter topologies their and control strategies are reported in [14]. Matrix converter has limited voltage ratio of 86.6% and high number of power semiconductor devices. The voltage ratio is improved from 0.866 to 0.97 using square wave modulation and 0.92 using trapezoidal wave modulation [20]. The matrix converter can increasingly be used in industrial applications due to the following advantages: bidirectional power flow, increased power/weight and power/volume ratio, low displacement factor etc. [7], [15]-[17]. Several control techniques are proposed to control the matrix converter namely Venturini Algorithm, PWM, Space vector modulation, Space Vector Pulse Width Modulation [4], [5], [8], [16]. These techniques are applicable only for the motors with sinusoidal back EMF such as induction motor and synchronous motors. The BLDC motor has trapezoidal back EMF [8]-[11]. Therefore, these techniques are not applicable for BLDC motor. A new control technique was proposed in [7], [12], [13] to drive the BLDC motor using matrix converter. In [7], [12] the BLDC motor is driven with matrix converter and the control of speed and torque parameters were not considered. Carrier based modulation scheme to drive the BLDC motor with matrix converter is demonstrated in [12]. A five phase BLDC motor fed by single sided matrix converter with hysteresis band control is reported in [13]. The author had not concentrated in speed characteristics. A new technique is proposed to drive the BLDC motor fed matrix converter and speed and torque of the BLDC motor is controlled. A PI controller and fuzzy logic controller are designed separately for speed controller and a hysteresis controller is designed for current controller to improve the speed and torque characteristics. The system is implemented using FPGA processor. In [24], the author developed a new modulation strategy for multi-level matrix converter.

II. MATRIX CONVERTERS

Fig. 1 shows the circuit diagram of the three phase matrix converter where A, B, C and a, b and c are the three input and output phases respectively. The matrix converter converts fixed three phase AC supply into variable amplitude and variable frequency three phase AC supply. It consists of an array of 3X3 bidirectional switches that gives 512 switching combinations.

International Scholarly and Scientific Research & Innovation 8(11) 2014 1832
The switching function is

\[ S_{ij} = \begin{cases} 1; & \text{closed} \quad i = (A, B, C) \\ 0; & \text{open} \quad j = (a, b, c) \end{cases} \]

In matrix converter, the output phases should never be open circuited since the load is inductive in nature, and the input phases should never be short circuited since the converter is driven by voltage source. By considering the constraint, only 27 switching states can be used out of 512 switching combinations [8]-[11].

The input phase currents are given by

\[ \begin{bmatrix} i_a(t) \\ i_b(t) \\ i_c(t) \end{bmatrix} = \begin{bmatrix} S_{aa}(t) & S_{ab}(t) & S_{ac}(t) \\ S_{ba}(t) & S_{bb}(t) & S_{bc}(t) \\ S_{ca}(t) & S_{cb}(t) & S_{cc}(t) \end{bmatrix} \times \begin{bmatrix} i_a(t) \\ i_b(t) \\ i_c(t) \end{bmatrix} \]

where

\[ I_i = S \times I_o \]

are realized by connecting two IGBTs in common collector configuration. Since the IGBTs do not have reverse blocking capability, two fast recovery diodes are connected in antiseries, each in inverse parallel across an IGBT, to sustain the voltage of either polarity when both IGBTs are switched off.

III. MATHEMATICAL MODELING OF BLDC MOTOR

The following assumptions are made for simplicity [18], [19], [25]. Stator resistances are equal, self and mutual inductances are constant, semiconductor devices of matrix converter are ideal, armature reaction is ignored, uniform airgap and iron losses are negligible. With these assumptions, the dynamic equations of the BLDC motor can be expressed as

\[ \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = \begin{bmatrix} R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \end{bmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \begin{bmatrix} L - M & 0 & 0 \\ 0 & L - M & 0 \\ 0 & 0 & L - M \end{bmatrix} \begin{bmatrix} \frac{d}{dt} i_a \\ \frac{d}{dt} i_b \\ \frac{d}{dt} i_c \end{bmatrix} + \begin{bmatrix} e_{sa} \\ e_{sb} \\ e_{sc} \end{bmatrix} \tag{3} \]

where

\[ E = k_e \omega_r, \quad k_e \text{is the back EMF constant; } \omega_r \text{ is the rotor speed in electrical radians/sec}; f_a(\theta), f_b(\theta) \text{ and } f_c(\theta) \text{ are the unity trapezoidal shape function with limit values between +1 and -1 and expressed as} \]

\[ f_a(\theta) = \begin{cases} \frac{6}{\pi}\theta & (0 < \theta \leq \frac{\pi}{6}) \\ \frac{1}{6} & \frac{\pi}{6} < \theta \leq \frac{5\pi}{6} \\ -\frac{6}{\pi}\theta + 6 & \frac{5\pi}{6} < \theta \leq \frac{7\pi}{6} \\ -1 & \frac{7\pi}{6} < \theta \leq \frac{11\pi}{6} \\ \frac{6}{\pi}\theta - 12 & \frac{11\pi}{6} < \theta \leq 2\pi \end{cases} \tag{5} \]

\[ f_b(\theta) \text{ and } f_c(\theta) \text{ are determined in the similar way. The electromagnetic torque is expressed as} \]

\[ T_e = k_e (f_a(\theta)i_a + f_b(\theta)i_b + f_c(\theta)i_c) \tag{6} \]

The motion equation is expressed as

\[ \frac{d\omega_r}{dt} = T_e - T_L - B\omega_r \tag{7} \]

where

\[ T_L \text{ is the Load Torque in Nm, } B \text{ is the frictional coefficient in Nms/rd, } f \text{ is the moment of inertia in kgm}^2, P \text{ is pole pairs, } \omega_r \text{ is rotor speed in electrical rad/s, } \omega_m \text{ is rotor speed in mechanical rad/s.} \]
IV. CONTROL PRINCIPLE OF PROPOSED TECHNIQUE

In indirect transfer function method, the direct matrix converter is considered as virtual rectifier, virtual inverter and virtual DC link. The switching patterns for virtual rectifier and virtual inverter are derived separately.

![Diagram of virtual inverter](image)

**TABLE I**

<table>
<thead>
<tr>
<th>Angle</th>
<th>Voltage Max</th>
<th>Voltage Min</th>
<th>ON State switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>330 - 360°</td>
<td>C, B</td>
<td>S_{c1} and S_{a2}</td>
<td></td>
</tr>
<tr>
<td>30 - 90°</td>
<td>A, B</td>
<td>S_{d1} and S_{a2}</td>
<td></td>
</tr>
<tr>
<td>90 - 150°</td>
<td>A, C</td>
<td>S_{d1} and S_{a2}</td>
<td></td>
</tr>
<tr>
<td>150 - 210°</td>
<td>B, C</td>
<td>S_{d1} and S_{a2}</td>
<td></td>
</tr>
<tr>
<td>210 - 270°</td>
<td>B, A</td>
<td>S_{d1} and S_{a2}</td>
<td></td>
</tr>
<tr>
<td>270 - 330°</td>
<td>C, A</td>
<td>S_{c1} and S_{a2}</td>
<td></td>
</tr>
</tbody>
</table>

A. Realization of DC output – Virtual Rectifier

The two terminal DC output is obtained from the three phase AC using a virtual rectifier. Fig. 2 shows the circuit diagram of the virtual rectifier. In virtual rectifier, among the three input phases, the most positive phase will carry the positive current and most negative phase will carry the negative current. The third phase is inactive phase which carries the zero current. At every moment, the maximum and minimum voltages are sensed. This maximum and minimum voltage changes in every 60 electrical degrees. Table I shows the maximum and minimum voltages over a period of 360°. For example, from 270°-330°, the input phases C and A will be connected with the output phases and so on. The resultant two terminal DC voltage is the envelope of the input voltage.

![Virtual rectifier](image)

B. Realization of Virtual Inverter

Fig. 3 shows the circuit of virtual inverter. The function of the virtual inverter is to excite the BLDC motor stator winding according to the position of the rotor so as to synchronize the stator rotating magnetic field with rotating permanent magnet field. The rotor position of the motor is obtained from three hall sensors.

A single current hall sensor can be used to reconstruct the phase currents of ac motors fed by matrix converter and this method is applicable to only for the motors with sinusoidal back EMF [21]. In [22], instead of hall sensor, a three phase hysteresis comparator is used for commutation of switches and for position sensing. Adaptive flux observer method is used to sense the rotor position and speed in matrix converter fed synchronous machine [23].

![Virtual inverter](image)

**TABLE II**

<table>
<thead>
<tr>
<th>Rotor Position</th>
<th>Hall Sensor Output</th>
<th>Output Phase</th>
<th>ON state switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 60°</td>
<td>1 0 0 1 0 -1</td>
<td>a b c</td>
<td>S_{a1} &amp; S_{c2}</td>
</tr>
<tr>
<td>60 - 120°</td>
<td>1 0 1 1 -1 0</td>
<td>a b c</td>
<td>S_{a1} &amp; S_{c2}</td>
</tr>
<tr>
<td>120 - 180°</td>
<td>0 0 1 0 -1 1</td>
<td>a b c</td>
<td>S_{a1} &amp; S_{c2}</td>
</tr>
<tr>
<td>180 - 240°</td>
<td>0 1 0 1 0 1</td>
<td>a b c</td>
<td>S_{a1} &amp; S_{c2}</td>
</tr>
<tr>
<td>240 - 300°</td>
<td>0 1 0 1 -1 1</td>
<td>a b c</td>
<td>S_{a1} &amp; S_{c2}</td>
</tr>
<tr>
<td>300 - 360°</td>
<td>1 0 0 0 0 1</td>
<td>a b c</td>
<td>S_{a1} &amp; S_{c2}</td>
</tr>
</tbody>
</table>

C. Generation of Gate Pulses

The virtual rectifier and the virtual inverter are fictitious stages. The modulation schemes of two stages are merged into one modulation scheme. In the virtual rectifier stage, there are six switching states to obtain the two terminal DC output and in virtual inverter stage also there are six switching states according to the hall sensor output. While combining these two stages there are 36 switching states to drive the BLDC motor. The transfer matrix has been realized as a function of input voltage and rotor position/hall sensor.
motor currents within a small band around the reference current and generates the switching pattern. The switching patterns from hysteresis controller and max-min detector are combined to generate the switching pattern for matrix converter.

A. Hysteresis Current Controller

The reference phase currents from reference current generator are compared with phase currents of the motor. From these error currents, the switching is generated depending on its relationship to the hysteresis current window. The voltage to be applied to the BLDC motor is derived by comparing the reference current to the motor phase current using the following equation

\[ \text{if } (i^* - i) \geq \Delta i \quad \text{then } V = V_{DC} \]
\[ \text{if } (i^* - i) \leq \Delta i \quad \text{then } V = 0 \]  

(10)

where \( \Delta i \) is the hysteresis band.

B. Speed Controller

The regulation of speed is achieved using speed controller. In the speed control loop the reference speed \( \omega^* \) and actual speed \( \omega_{\text{actual}} \) are compared in error detector and error signal is obtained. This error signal is manipulated in PI and fuzzy logic control based speed controller. The output of speed controller is reference torque \( T_{\text{ref}} \) for the current control loop.

1. PI Speed Controller

The speed regulation is accomplished in PI controller. By increasing the proportional gain of the speed controller, better tracking of speed reference is achieved and sensitivity of the controller also increases, which reduces the overshoot in speed characteristics. If the proportional gain is too high, the system will become unstable and if it too small, the settling time of the speed will be high. Better speed tracking will be obtained during transient period by increasing the proportional gain. If integral gain is too high, the output of controller will saturate and the speed error required to change the reference torque is high. This will lead to sluggish response during change in the reference speed or load disturbance. If the integral gain is too small, peak overshoot will be high. An optimal value of proportional and integral gain is obtained by tunings the system using ziegler-Nichols reaction rate method and the values are 0.137 and 1 respectively. An anti-windup circuit is included to overcome the saturation in integral controller.

2. Fuzzy Logic Based Speed Controller

Fuzzy logic controllers are inherently robust to load disturbance and change in system operating conditions also they are easy to implement [9], [15], [26]. The variables involved in the antecedent part are the input variables. In this system, error and change in error are input variables. The error \( e(t) \) is the difference between reference speed \( \omega^* \) and actual speed \( \omega_{\text{actual}} \) and the change in error \( ce(t) \) is the ratio of difference between two successive sampling errors to the sampling period shown as
The input and output variables are normalized between -1 and +1. With these fuzzy values, a complete rule table with 49 rules is formed as shown in Table III. The input crisp values are converted into these fuzzy values using triangular membership function in fuzzification module and given to inference engine. The triangular membership function is shown in Fig. 6. In the inference engine, min-max compositional rule is adopted and is best suited for hardware implementation since min-max comparisons alone are involved and there is no multiplication. The result of inference engine is fuzzified torque component of machine current. This fuzzy value is converted into crisp value in defuzzification module.

![Fig. 5 Closed Loop control of MC fed BLDCM](image)

**Fig. 5 Closed Loop control of MC fed BLDCM**

**TABLE III**

RULE TABLE OF FUZZY LOGIC CONTROLLER

<table>
<thead>
<tr>
<th>Error $e(t)$</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in err or $ce(t)$</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
</tr>
<tr>
<td>NM</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
</tr>
<tr>
<td>PS</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PB</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
</tbody>
</table>

The input and output variables are normalized between -1 and +1. With these fuzzy values, a complete rule table with 49 rules is formed as shown in Table III. The input crisp values are converted into these fuzzy values using triangular membership function in fuzzification module and given to inference engine. The triangular membership function is shown in Fig. 6. In the inference engine, min-max compositional rule is adopted and is best suited for hardware implementation since min-max comparisons alone are involved and there is no multiplication. The result of inference engine is fuzzified torque component of machine current. This fuzzy value is converted into crisp value in defuzzification module.

**TABLE IV**

SPECIFICATIONS OF BLDC MOTOR

<table>
<thead>
<tr>
<th></th>
<th>continuous stall torque</th>
<th>torque constant</th>
<th>max speed</th>
<th>moment of inertia</th>
<th>per phase resistance</th>
<th>per phase inductance</th>
<th>voltage (line-line)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.2 Nm</td>
<td>0.49 Nm/A</td>
<td>4600 RPM</td>
<td>1.8/1.4 kgcm²</td>
<td>3.07 ohms</td>
<td>6.57e-3H</td>
<td>210 V</td>
</tr>
</tbody>
</table>
The speed of the motor reaches the set speed at 0.005 sec as shown in Fig. 7. During the transient period, the motor develops the rated torque of 6.6Nm to reach the set speed at the faster rate. At 0.05 sec, the reference speed of the motor is increased to 600 RPM. At 0.1 sec, the load torque of 1Nm is applied and the torque developed by the motor is shown in Fig. 8. The motor draws the required higher current from the supply to meet the requirement of the load torque. The stator current and the back EMF are shown in Figs. 9 & 10 respectively. Fig. 11 shows the input current of the matrix converter and the current is not in sinusoidal shape. Fig. 12 shows the speed characteristics of the BLDCM using FLC based speed controller for the same input. It is observed that the settling time is 0.034 sec which is less than that of PI based system. When the load of 1Nm is applied, the reduction in speed is not noticeable whereas in PI based system, the motor regains the set speed after 0.1 sec only. Hence, it is proved that the FLC based system performs well in both steady state and dynamic conditions.

**B. Hardware Results**

A three phase to three phase matrix converter was designed using 18 IGBTs. The common emitter bidirectional switch consists of two diodes and two IGBTs which are connected in anti parallel. A three phase, 440V, 50Hz supply is given to MC through a three phase auto transformer. Initially the max-min voltages of input three phase supply are sensed using the circuit as shown in Fig. 13 and are given to FPGA SPARTAN 3Ekit. The position of the rotor is sensed using the hall sensor. The output of the three hall sensors areas shown in Fig. 14 and these signals are given to SPARTAN kit. The 18 gate pulses for IGBTs are generated using controller. The waveforms are captured using WT1800 Yokogawa 6 channel power analyzer as shown in Fig. 15. The switching frequency was set as 10 KHz. The input side filter inductor and capacitor were chosen to be 120µH and 50µF respectively. Fig. 16 shows the input phase voltage and current to the matrix converter and it is observed that the input voltage and current are in phase but the input current is in rectangular shape. Figs. 17 and 18 show the stator current and voltage respectively. Fig 19 shows the ...
hardware setup of Matrix converter fed BLDC Motor using FPGA processor.

Fig. 13 Circuit to sense max-min voltage (R')

Fig. 14 Output of hall sensors

Fig. 15 The switching patterns for power devices

Fig. 16 Input phase voltage and current

Fig. 17 Stator current

Fig. 18 Stator voltage

Fig. 19 Experimental Setup of matrix converter fed BLDC Motor

VII. CONCLUSION

This paper has presented a set of control methodologies to control the three phase to three phase matrix converter fed BLDC motor. The proposed algorithm allowed the control of speed characteristics of BLDC motor in a flexible manner. Two sets of experimental setup were studied. In the first case, a separate PI controller and a hysteresis controller were designed to study the performance of speed and torque control. In the second case, the same was repeated with the FLC in the place of the PI controller. The outcome of the research is that the FLC based system exhibits better performance as compared to the PI based system. Experimental results validate the validity of the proposed
control schemes. This work can be extended further by incorporating braking and regenerative operations for four quadrant drive and torque characteristics can be improved by adopting any one of the torque ripple minimization technique. Also by replacing the direct matrix converter by indirect matrix converter, the sinusoidal input current may be obtained.

REFERENCES


