Effects of Four Dietary Oils on Cholesterol and Fatty Acid Composition of Egg Yolk in Layers

Abstract—Dietary cholesterol has elicited the most public interest as it relates with coronary heart disease. Thus, humans have been paying more attention to health, thereby reducing consumption of cholesterol enriched food. Egg is considered as one of the major sources of human dietary cholesterol. However, an alternative way to reduce the potential cholesterolemic effect of eggs is to modify the fatty acid composition of the yolk. The effect of palm oil (PO), soybean oil (SO), sesame seed oil (SSO) and fish oil (FO) supplementation in the diets of layers on egg yolk fatty acid, cholesterol, egg production and egg quality parameters were evaluated in a 42-day feeding trial. One hundred and five Isa Brown laying hens of 34 weeks of age were randomly distributed into seven groups of five replicates and three birds per replicate in a completely randomized design. Seven corn-soybean basal diets (BD) were formulated: BD+No oil (T1), BD+1.5% PO (T2), BD+1.5% SO (T3), BD+1.5% SSO (T4), BD+1.5% FO (T5), BD+0.75% SO+0.75% FO (T6) and BD+0.75% SSO+0.75% FO (T7). Five eggs were randomly sampled at day 42 from each replicate to assay for the cholesterol, fatty acid profile of egg yolk and egg quality assessment. Results showed that there were no significant (P>0.05) differences observed in production performance, egg cholesterol and egg quality parameters except for yolk height, albumen height, yolk index, egg shape index, haugh unit, and yolk colour. There were no significant differences (P>0.05) observed in total cholesterol, high density lipoprotein and low density lipoprotein levels of egg yolk across the treatments. However, diets had effect (P<0.05) on TAG (triaclyglycerol) and VLDL (very low density lipoprotein) of the egg yolk. The highest TAG (603.78 mg/dl) and VLDL values (120.76 mg/dl) were recorded in eggs of hens on T4 (1.5% sesame seed oil) and was similar to those on T1 (1.5% soybean oil), T3 (1.5% fish oil) and T6 (0.75% soybean oil + 0.75% fish oil). However, results revealed a significant (P<0.05) variations on eggs’ summation of polyunsaturated fatty acid (PUFA). In conclusion, it is suggested that dietary oils could be included in layers’ diets to produce designer eggs low in cholesterol and high in PUFA especially omega-3 fatty acids.

Keywords—Dietary oils, Egg cholesterol, Egg fatty acid profile, Egg quality parameters.

I. INTRODUCTION

Egg is considered as one of the major sources of human dietary cholesterol, the average content ranges from 195 to 230 mg per egg. However, eggs are also very valuable source of proteins and contain many substances with biological functions beyond basic nutrition [1]-[3]. Egg lipids are confined to the yolk and account for about 30% of the fresh weight of the yolk and for 60% of the dry matter [4]. In chickens, breed or strain [5] or age of the hen [6] can influence yolk cholesterol; nonetheless, information on the influence of strain and age on egg fatty acid composition throughout the laying cycle is controversial [7]. This is because the reduction of the cholesterol content of poultry products has met with little success; dietary fatty acid modification has been pursued as a viable method of adding value to poultry products. Due to the numerous proposed cardiovascular benefits associated with consumption of omega-3 (n-3) fatty acids, marketing of eggs enriched by n-3 fatty acid may benefit the producer [8]. An alternative way to reduce the potential cholesterolemic effect of eggs is to modify the fatty acid composition of the yolk [7]. The fatty acid composition of egg lipids in laying hens can be influenced by the fatty acid composition of their diet [9]. The eggs from hens provided with standard feed are poor in linolenic acid (LNA; C18:3n-3), and does not contain eicosapentaenoic (EPA; C20:5n-3) and docosahexaenoic (DHA; C22:6n-3) fatty acids [10]. The majority of the egg’s fatty acids are monounsaturated (~44%) with saturated and polyunsaturated accounting for ~29 and 11%, respectively [11].

There is evidence that hens have a unique ability to deposit dietary lipid into the egg yolk, which makes the egg a potential source of polyunsaturated fatty acids (PUFAs) [12]. The inclusion of n-3 PUFA promotes a qualitative change in the yolk fatty acid profile and reducing the n-6/n-3 ratio to a more beneficial level concerning the human nutritional needs [13].

Several studies have been conducted to determine the effect of different n-3 fatty acids sources in diets on the cholesterol and fatty acid composition of egg yolk [3], [12], [14]-[17]. However, there is paucity of information on the comparative effects of palm oil, soybean oil, sesame seed oil, and fish oil on egg yolk cholesterol and fatty acid composition and performance characteristics of layers.

II. METHODOLOGY

A. Experimental Site

This study was conducted at the Egg Production Unit, Teaching and Research Farm, University of Ibadan, Ibadan, Oyo State, Nigeria.

B. Experimental Diets and Management of Birds

One hundred and five (105) Isa Brown layers of thirty-four weeks of age were used for this study. The layers were housed in a battery cage kept under semi-controlled environmental conditions with exposure to 16-hours photoperiod. Seven experimental diets were formulated according to [18] standard specifications for brown egg laying hens. Treatment 1 (T1)
was the basal diet with no dietary oil inclusion (positive control). Treatment 2 (T2) contained basal diet + 1.5% palm oil (negative control); treatment 3 (T3) basal diet + 1.5% soybean oil; treatment 4 (T4) basal diet + 1.5% sesame seed oil; treatment 5 (T5) basal diet + 1.5% fish oil; treatment 6 (T6) soybean oil; treatment 4 (T4) basal diet + 1.5% sesame seed oil and 0.75% fish oil; treatment 5 (T5) basal diet + 1.5% fish oil and 0.75% sesame seed oil and 0.75% fish oil. The study lasted for six weeks. Birds were weighed, tagged, and randomly assigned to receive one of the seven experimental diets consisted five replicates with three birds each. The layers were fed experimental diets and provided with clean water for the duration of the study.

C. Experimental Design

The experimental design was a completely randomised design (CRD).

D. Data and Sample Collection

Performance parameters (feed intake, egg production, egg weight, and feed conversion ratio) were calculated during the course of the trial. To determine the cholesterol and fatty acid profile of egg yolk, three eggs were randomly sampled at week six of the experiment from each treatment respectively. Egg quality parameters (yolk weight, yolk index, albumin weight, haugh unit, shell weight, and shell thickness) were measured at week six, using five eggs from each treatment.

E. Performance Evaluation

Daily egg production per replicate was recorded and number of eggs per hen per week was calculated. Eggs laid per replicate were weighed daily and average weight for that particular week was calculated. The data thus generated (Egg production and Egg weight) was used to calculate egg mass/bird/week (weekly egg no. in replicate x average egg weight). Weekly feed intake was determined (total feed offered during a week - Feed refused at the end of week). Data on feed intake and egg mass were used to calculate feed conversion (feed intake/egg mass; g/g).

F. Egg Quality Evaluation

1. External Qualities

Egg weight was measured using Mettler top-loading weighing balance. The length and width of each egg (in cm) was measured using Vernier caliper. The length was measured as the distance between two ends of the egg at the widest cross sectional region using Vernier caliper. The length was measured as the distance between the broad and narrow ends of the eggs.

2. Egg Shape Index (ESI)

This was calculated as the percentage of the egg breadth (width) to the egg length [19]. The formula that was used is as follows:

\[\text{Egg Shape Index} = \frac{\text{Width of egg (mm)}}{\text{Length of egg (mm)}} \times 100 \]

The thickness of individual air-dried shells is measured to the nearest 0.01mm using micrometre screw gauge [20]. Eggshells were air-dried in the crates. The relative shell weight was calculated by relating the shell weight to the weight of the egg. Shell thickness was measured using a micrometre meter gauge (in mm).

G. Internal Qualities

Yolk height, yolk width and yolk diameter (in cm) were measured using a Vernier caliper. Albumen height: The egg was gently broken and the maximum albumen height was measured with tripod micrometre [21]. Albumen weight: is the difference between the egg weight and the sum of weight of yolk and dry eggshell expressed as a percentage of the whole egg. Percentage Albumen weight: was calculated as the percentage of the albumen weight to other egg weight. Yolk weight: was measured using Mettler top-loading weighing balance. Percentage Yolk weight: was calculated as the percentage of the yolk weight to the egg weight. Yolk index: was estimated from ratio of yolk height to yolk width. Visual yolk colour: was determined with a yolk colour fan (scale 1 to 15). Haugh unit (HU): is a relationship between egg weight and height of thick albumen surrounding yolk. This was calculated using the values obtained from the egg weight and albumen height as expressed by [22] in the formula:

\[\text{HU} = 100 \log \left[H + 7.57 - 1.7 W^{0.37} \right] \]

where, H = Albumen Height (mm) and W = Weight of the egg (g).

1. Fatty Acid Analysis of Egg Yolk and Experimental Diets

Fatty acid analysis of egg yolk, test diets, and dietary oils was done as described by [23]. 2g of sample was weighed into 100ml conical flask; 20ml of benzene was added, shaking thoroughly to extract all the fatty acids. The mixture was transferred into 250ml separating funnel to separate the benzene extract from the aqueous extract. 5ml aliquot of the benzene extract was pipetted into 15ml test tube and 2ml of 10% copper acetate was added to develop colour. Absorbance or optical density of sample extracts was read on a spectrophotometer at a wavelength of 630nm.

Standard solutions of each fatty acids were prepared in the range 0-10ppm from 100ppm stock solution of each fatty acids. Absorbance or optical density of standard solutions of different concentrations were read on a spectrophotometer at a wavelength defined for each fatty acids as listed thus: Capric acid (700nm), Lauric acid (640nm), Myristic acid (655nm), Palmitic acid (630nm), Palmitoleic acid (685nm), Stearic acid (650nm), Oleic acid (670nm), Linoleic acid (660nm), Linolenic acid (680nm) and Arachidonic acid (690nm).
The percentage of each fatty acid was obtained using:

\[
\% \text{Fatty Acid} = \frac{\text{Absorbance of sample} \times \text{Gradient Factor of a specific fatty acid} \times \text{Dilution Factor}}{\text{Weight of Sample} \times 10000}
\]

TABLE I

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
<th>(T_5)</th>
<th>(T_6)</th>
<th>(T_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>58.05</td>
<td>53.55</td>
<td>53.55</td>
<td>53.55</td>
<td>53.55</td>
<td>53.55</td>
<td>53.55</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>22.00</td>
<td>22.00</td>
<td>22.00</td>
<td>22.00</td>
<td>22.00</td>
<td>22.00</td>
<td>22.00</td>
</tr>
<tr>
<td>Wheat offal</td>
<td>9.20</td>
<td>12.20</td>
<td>12.20</td>
<td>12.20</td>
<td>12.20</td>
<td>12.20</td>
<td>12.20</td>
</tr>
<tr>
<td>Palm oil</td>
<td>0.00</td>
<td>1.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Soya bean oil</td>
<td>0.00</td>
<td>0.00</td>
<td>1.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
<td>0.00</td>
</tr>
<tr>
<td>Sesame oil</td>
<td>0.00</td>
<td>0.00</td>
<td>1.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
</tr>
<tr>
<td>Fish oil</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.50</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Limestone</td>
<td>8.50</td>
<td>8.50</td>
<td>8.50</td>
<td>8.50</td>
<td>8.50</td>
<td>8.50</td>
<td>8.50</td>
</tr>
<tr>
<td>Di-Calcium Phosphate</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Vit-Min Premix</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Salt</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Lysine</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Calculated Nutrient

Crude Protein	17.11	17.16	17.16	17.16	17.16	17.16	17.16
ME, kcal/kg	2699.80	2718.61	2723.75	2723.02	2720.54	2722.15	2721.78
Fat	2.73	2.70	2.70	2.70	2.70	2.70	2.69
Crude Fibre	3.22	3.46	3.46	3.46	3.46	3.46	3.46
Calcium	3.60	3.61	3.61	3.61	3.61	3.61	3.61
Total Phosphorus	0.49	0.50	0.50	0.50	0.50	0.50	0.50
Methionine	0.38	0.38	0.38	0.38	0.38	0.38	0.38
Lysine	0.98	0.99	0.99	0.99	0.99	0.99	0.99
Sodium	0.22	0.23	0.23	0.23	0.23	0.23	0.23

\(T_1\) - Basal diet; \(T_2\) - Basal diet + 1.5% Palm oil; \(T_3\) - Basal diet + 1.5% Soybean oil; \(T_4\) - Basal diet + 1.5% Sesame seed oil; \(T_5\) - Basal diet + 0.75% Soya-bean oil + 0.75% Fish oil; \(T_6\) - Basal diet + 0.75% Sesame seed oil + 0.75% Fish oil, Vit-Min Premix- Vitamin-Mineral Premix, ME- Metabolisable Energy

*2.5kg Premix supplied contain Vitamin A-10,000,000IU; Vit D3-2,000,000IU; Vit E-23,000IU; Vit K3-2,000mg; Vit B1-3000mg; Vit B2-6,000mg; Nicotinic acid-50,000mg; Calcium Pantothenate-50,000mg; Vit B6-5,000mg; Vit B12-25mg; Folic acid-1000mg; Biotin-50mg; choline chloride-400,000mg; manganese-120,000mg; iron-100,000mg; zinc-80,000mg; copper-8,500mg; iodine-1,500mg; cobalt-300mg; selenium-120mg and Anti-Oxidant-120,000mg.

H. Egg Yolk Cholesterol Quantification

The eggs used for this analysis were prepared according to the procedure described by [24]. The eggs were first hard-cooked, allowed to cool, after which the weight of the boiled eggs was noted. The eggshell was peeled off and weighed followed by careful removal of the egg albumen. The yolks were separated, weighed, and crumbled. 1g of the yolk was homogenized with 15ml of chloroform-methanol 2:1 (v/v), thoroughly mixed, and filtered. Egg homogenate filtrates were designated egg yolk samples. Total Cholesterol (TC), HDL, and Total Triglyceride (TG) concentration in the egg yolk were determined using the respective cholesterol assay kit. The kit contained cholesterol assay reagent and standard cholesterol solution, used for calibration curve. TC was determined using 10µl of egg yolk sample and 10µl of deionized water were pipetted into a test tube, followed by 1000 µl recorded as mg/g of egg yolk was computed from various values obtained from the various cholesterol standard. This method was used to analyse the HDL, except that HDL reagent was used. TG were automated, gradients was collected in tubes and was analysed using an auto-analyser.

LDL was calculated as expressed by [25]:

\[
\text{LDL} = \text{TC-HDL-(TG/5)}
\]

where LDL is Low Density Lipoprotein, TC is Total Cholesterol, HDL is High Density Lipoprotein, and TG is Triglyceride. VLDL was calculated as expressed by [25]:

\[
\text{VLDL} = \text{TG/5}
\]

where VLDL is Very low Density Lipoprotein and TG is Triglyceride.

I. Proximate Analysis

Proximate analysis of the test diet samples was determined following the procedures of [26]. Moisture content was determined by drying 2g of feed samples in an oven at 100-105°C for 24 hours until a constant weight was reached. Moisture content value was obtained by subtracting the weight of oven-dried sample from the feed sample. Crude protein was determined by using Kjeldahl method, which comprised digestion, distillation, and titration of the distillate. Crude protein was determined using the Kjeldahl method.
protein value was obtained by multiplying percentage nitrogen content with 6.25 (crude protein content). Fat was determined with soxhlet extraction method using petroleum ether. Ash content was determined by igniting 2g of the feed sample in a Muffle furnace set between 550 and 600°C for 4 hours, the residue was allowed to cooled and weighed. The ash content value was obtained by subtracting the weight of ash residue from the feed sample.

J. Statistical Analysis

Data were analysed using descriptive statistics and Analysis of Variance (ANOVA) of GLM procedure [27]. Means were separated using Duncan Multiple Range Test [28].

III. RESULTS

The results on the effect of dietary oils inclusion on the fatty acid composition of egg yolk at day 42 are presented in Table II. There were no significant differences (P>0.05) observed in C16:0-Palmitic acid, C18:0-Stearic acid, C18:1-Oleic acid, C18:2n-6-Linoleic acid, C18:3n-3-Linolenic acid and C20:0-Arachidonic acid levels of egg yolk. However, C10:0-Lauric acid level of egg yolk was significant (P<0.05) across the treatments. The C10:0 level (11.21%) recorded in egg yolks from birds on treatment 4 (1.5% sesame seed oil inclusion) was similar to those on treatments 3 (1.5% soybean oil), 5 (1.5% fish oil), 6 (0.75% soybean oil + 0.75% fish oil), and 1 (no dietary oil inclusion). These were significantly (P<0.05) higher than that of treatments 2 (1.5% palm oil) and 7 (0.75% sesame seed oil + 0.75% fish oil). The summation of the saturated fatty acids, monounsaturated fatty acids [C18:1-Oleic acid] and n-6/n-3 ratio (omega-6 to omega-3 ratio) in this study were not significant (P>0.05). However, the summation of PUFA (polyunsaturated fatty acids) [C18:2n-6-Linoleic acid and C18:3n-3-Linolenic acid] was significant (P<0.05) across the treatments. The PUFA level (31.26%) recorded in eggs of hens on treatments 5 (1.5% fish oil inclusion) and 6 (0.75% soybean oil + 0.75% fish oil inclusion) which was similar to those on other treatments except treatment 2 (30.77%) which contained 1.5% palm oil inclusion.

The results on the effect of dietary oils inclusion on egg quality are presented in Table V. There were no significant differences (P>0.05) observed in egg weight, yolk weight, yolk ratio, albumen weight, albumen ratio, shell weight, shell ratio, and shell thickness. However, there were significant differences (P<0.05) recorded in yolk height, albumen height, yolk index, egg shape index, haugh unit, and yolk colour.

The results on the effect of dietary oils inclusion on the lipid profile of egg yolk at day 42 of the trial are presented in Table III. There were no significant differences (P>0.05) observed in total cholesterol, high density lipoprotein and low density lipoprotein levels of egg yolk across the treatments. However, there were significant differences (P<0.05) recorded in TAG (triacylglycerol) and VLDL (very low density lipoprotein) levels of egg yolk across treatment. The higher TAG level (603.78 mg/dl) and VLDL level (120.76 mg/dl) were recorded in eggs of hens on treatment 4 (1.5% sesame seed oil inclusion) and was similar to those on other treatments except treatment 2 (30.77%) which contained 1.5% palm oil inclusion.

| TABLE II |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Fatty Acids** | **T1** | **T2** | **T3** | **T4** | **T5** | **T6** | **T7** | **SEM** | **P value** |
| C10:0 | 11.20a | 11.07c | 11.18ab | 11.21a | 11.17 ab | 11.19a | 11.11bc | 0.02 | 0.0078 |
| C16:0 | 14.33 | 14.17 | 14.36 | 14.24 | 14.11 | 14.15 | 14.29 | 0.09 | 0.3755 |
| C18:0 | 10.38 | 10.28 | 10.33 | 10.36 | 10.27 | 10.33 | 10.42 | 0.06 | 0.4716 |
| C18:1 | 15.71 | 15.78 | 15.66 | 15.63 | 15.72 | 15.63 | 15.86 | 0.08 | 0.4274 |
| C18:2n-6 | 15.58 | 15.44 | 15.53 | 15.63 | 15.72 | 15.63 | 15.66 | 0.11 | 0.6742 |
| C18:3n-3 | 15.58 | 15.53 | 15.53 | 15.51 | 15.54 | 15.63 | 15.42 | 0.10 | 0.4773 |
| C20:0 | 17.24 | 17.33 | 17.39 | 17.42 | 17.48 | 17.46 | 17.23 | 0.12 | 0.6463 |
| Σ saturated | 53.14 | 52.85 | 53.26 | 53.23 | 53.03 | 53.13 | 53.05 | 1.60 | 1.0000 |
| Σ MUFA | 15.71 | 15.78 | 15.66 | 15.63 | 15.72 | 15.63 | 15.86 | 0.08 | 0.4274 |
| Σ PUFA | 31.16a | 30.77b | 31.06b | 31.14ab | 31.26a | 31.26b | 31.08ab | 0.06 | 0.0257 |
| n-6/n-3 ratio | 1.00 | 1.01 | 1.00 | 1.01 | 1.01 | 1.00 | 1.02 | 1.10 | 1.4125 |

*Means on the same row with different superscripts are significantly (P< 0.05) different. SEM=Standard Error of Mean; C10:0-Lauric, C16:0-Palmitic, C18:0-Stearic, C18:1-Oleic, C18:2n-6-Linoleic, C18:3n-3-Linolenic, C20:0-Arachidonic; Σ-Summation, MUFA-Monounsaturated Fatty Acid, PUFA-Polyunsaturated Fatty Acid, n-6 (omega-6), n-3 (omega-3), T1- Basal diet; T2- Basal diet + 1.5% Palm oil; T3- Basal diet + 1.5% Soybean oil; T4- Basal diet + 1.5% Fish oil; T5- Basal diet + 1.5% Sesame seed oil; T6- Basal diet + 1.5% Fish oil; T7- Basal diet + 0.75% Soybean oil + 0.75% Fish oil.
The results on the effect of dietary oils inclusion on production performance are presented in Table IV. There were no significant differences (P>0.05) observed in egg production, egg weight, layers’ weight, feed intake, and FCR (feed conversion ratio) across the treatments.

The values of yolk height, albumen height, yolk index, and haught unit statistically followed a similar trend. Egg shape index of 79.97 recorded in eggs of hens on treatment 1 were similar to those on treatments 2, 5, 6 and 7. Yolk colour value of 7.20 was recorded in eggs laid by hens on treatments 5, 6 and 7 and was similar to those on treatments 2, 3 and 4 respectively.

IV. DISCUSSION

The total percentage compositions of saturated, monounsaturated and polyunsaturated fatty acids in the egg yolks of the different treatments varied in relation to the source of lipids present in the diets (Table II). The hens on treatments 3 (1.5% soybean oil inclusion) and 7 (0.75% sesame seed oil + 0.75% Fish oil) laid eggs showing higher total saturated fatty acids level (53.26%) and MUFA (monounsaturated fatty acids) (15.86%) respectively than the egg yolks of hens on other treatments, although not significant. This is in consonance with the findings of [29].

However, there were significant differences recorded in TAG (triacylglycerol) and VLDL (very low density lipoprotein) levels of egg yolk across the treatments (Table III). These results is in accordance with the findings of [30] who established that different levels of dietary n-3 PUFA had no effect on the cholesterol contents of egg yolks in the laying hens when compared with the control. In contrast to our finding, [33] discovered that yolk cholesterol level was remarkably lower in the quails treated orally with fish oil capsules compared to the control group. It has been hypothesised that the inability to markedly reduce egg cholesterol levels is due to a physiological control mechanism that ultimately causes the cessation of egg production when yolk cholesterol deposition is inadequate for embryo survival [34]. However, there were significant differences recorded in TAG (triacylglycerol) and VLDL (very low density lipoprotein) levels of egg yolk across treatments. The higher TAG level (603.78 mg/dl) and VLDL level (120.76 mg/dl) was recorded in eggs laid by hens on treatment 4 (1.5% sesame seed oil), and the lower TAG level (437.79 mg/dl) and VLDL level (87.56 mg/dl) was recorded with treatment 1 (no dietary oil inclusion). These results contradict findings of [35] who were unable to find any reduction in egg yolk cholesterol and lipoprotein in the hens fed dietary oils. Similarly, [36] was unable to find any change in total TAG and cholesterol content of the eggs produced by the hens fed sources of n-3 PUFA.
Data on production performance of layers is presented in Table IV showing the effect of dietary oils inclusion on egg production, egg weight, layers’ weight, feed intake and feed conversion. Egg production was more than 80 percent for all treatments except for treatment 5, which was lower (78.03%). However, results were not significance among the egg production of birds across the treatments. According to previous studies, egg production was also not affected with the addition of different oils in the diets of layers [1], [12], [30], [32], [36], [37]. In addition, diets had no effect on feed intake of hens.

V. CONCLUSION AND RECOMMENDATION

The current study shows that supplementation of different oil sources into laying hen diets had no negative effect on production performance, egg cholesterol and egg quality parameters. The dietary oils added to the basal diet affected the PUFA (polysaturated fatty acid) content of the eggs positively but had no effect on the MUFA (monounsaturated fatty acid) content of the eggs. The effect of dietary oils inclusion on egg quality parameters as presented in Table V had no observable influence on egg weight, yolk weight, yolk ratio, albumen weight, albumen ratio, eggshell weight, shell ratio, and shell thickness. The findings of this experiment are in agreement with those found by [1] who found consistency in the proportion of yolk or albumen to total egg weight. In addition, it was reported that feeding n-3 PUFA to hens did not change yolk weight while comparing the nutritional value of various fat sources on egg quality, found no difference in Haugh unit estimates of eggs by different treatments. Yolk height was dependent on dietary treatments, thus significant results for yolk index estimates of eggs. Effect of dietary oils inclusion was pronounced for yolk colour of eggs recorded with eggs produced by hens on treatments 5, 6 and 7. This supports the previous findings that proportion of feedstuffs, rich in xanthophylls, in the poultry rations can affect yolk colour [46], [47]. In contrast, [1] did not observe significant difference in yolk colour while comparing the nutritional value of various fat sources for layers. This disparity may be due to the type and level of inclusion of ingredients used to produce the designer eggs.

There was no difference in feed conversion due to persistent egg production across all the treatments. This finding is in agreement with previous researchers who found no change in feed intake nor feed efficiency of hens fed different levels of dietary omega-3 (n-3) polyunsaturated fatty acids (PUFA) [37]. Similarly, there were no differences in egg weight and layers’ weight among different dietary treatments of the experiment. This result agrees with the findings of various studies that egg weight was not influenced by feeding different sources and levels of n-3 PUFA in the diet of laying hens [30], [36], [37], [39], [40].

The effect of dietary oils inclusion on egg quality parameters as presented in Table V had no observable influence on egg weight, yolk weight, yolk ratio, albumen weight, albumen ratio, shell weight, shell ratio, and shell thickness. The findings of this experiment are in agreement with those found by [1] who found consistency in the proportion of yolk or albumen to total egg weight. In addition, it was reported that feeding n-3 PUFA to hens did not change egg yolk weight [9], [41], [42]. Similarly, it was reported that the egg white weight was not affected by 5% canola oil supplementation to hens [43]. Non-significant effects of dietary oils on shell thickness are in line with previous findings [1]. It was also reported that flaxseed did not affect eggshell quality [44]. Albumen height and Haugh unit were significant across the treatments. Haugh unit based on the albumen height and egg weight is an acceptable measure of the quality and freshness of shell eggs. Eggs produced by hens on treatment 1 (no dietary oil inclusion) had higher albumen height (5.36mm) and Haugh unit (69.65) while treatment 4 (1.5% sesame seed oil inclusion) had lower albumen height (3.91mm) and Haugh unit (57.31). This is in line with the findings of [45] who found lower values of Haugh unit of eggs obtained by feeding of sunflower seed to laying hens. Contrary to this, [1] while investigating the effect of different fat sources on egg quality, found no difference in Haugh unit estimates of eggs by different treatments. Yolk height was dependent of dietary treatments, thus significant results for yolk index estimates of eggs. Effect of dietary oils inclusion was pronounced for yolk colour of eggs recorded with eggs produced by hens on treatments 5, 6 and 7. This supports the previous findings that proportion of feedstuffs, rich in xanthophylls, in the poultry rations can affect yolk colour [46], [47]. In contrast, [1] did not observe significant difference in yolk colour while comparing the nutritional value of various fat sources for layers. This disparity may be due to the type and level of inclusion of ingredients used to produce the designer eggs.

V. CONCLUSION AND RECOMMENDATION

The current study shows that supplementation of different oil sources into laying hen diets had no negative effect on production performance, egg cholesterol and egg quality parameters. The dietary oils added to the basal diet affected the PUFA (polysaturated fatty acid) content of the eggs positively but had no effect on the MUFA (monounsaturated fatty acid) and saturated fatty acids contents of eggs across the treatments. It can therefore be recommended that producers of designer eggs should adopt the use of fish oil in formulating layers’ rations to produce eggs that is higher in PUFA. In
addition, higher inclusion levels of the dietary oils in layers’ diet should be experimented in subsequent studies.

REFERENCES

