Abstract—In rough set models, tolerance relation, similarity relation and limited tolerance relation solve different situation problems for incomplete information systems in which there exists a phenomenon of missing value. If two objects have the same few known attributes and more unknown attributes, they cannot distinguish them well. In order to solve this problem, we presented two improved limited and variable precision rough set models. One is symmetric, the other one is non-symmetric. They all use more stringent condition to separate two small probability equivalent objects into different classes. The two models are needed to engage further study in detail. In the present paper, we newly form object classes with a different respect comparing to the first suggested model. We overcome disadvantages of non-symmetry regarding to the second suggested model. We discuss relationships between or among several models and also make rule generation. The obtained results by applying the second model are more accurate and reasonable.

Keywords—Incomplete information system, rough set, symmetry, variable precision.

I. INTRODUCTION

ROUGH set theory, proposed by Z. Pawlak in 1980s [1], [2], has been found to be a very useful mathematics tool for studying inexact, uncertain or vague information systems. Indiscernibility relation (reflexive, symmetric and transitive) is the basis of Z. Pawlak’s rough set theory which is primarily applied to complete information system. In real world, due to the data measuring error or the limited ability in comprehending or acquiring data, we have to confront incomplete information systems (IIS) in knowledge discovery. Because of existing null values in incomplete information systems, such an indiscernibility relation as a kind of equivalence relation in Z. Pawlak’s rough set theory, it is hard to construct due to the comparison between null value and real value is impossible. So, it is impossible for us to immediately cope with incomplete information with such kinds of indiscernibility relations.

Two approaches have been employed in rough set theory to deal with incomplete information systems. One is to transfer incomplete information table into complete information table by substituting null values with frequent attribute values, called indirect way. Another is to extend Z. Pawlak’s rough set theory to incomplete information table, called direct way.

An Improved Variable Tolerance RSM with a Proportion Threshold

Chen Wu, Youquan Xu, Dandan Li, Ronghua Yang, Lijuan Wang

An Incomplete Information System (IIS) can be denoted as...
\( S = (U, AT, V, f) \). Here, \( U \), a non-empty set of finite objects, is called the universe of discourse. \( AT \) is a non-empty set of finite attributes. \( V_a \) is the domain of attribute \( a \). Set \( V = \bigcup_{a \in AT} V_a \). \( f_a \) is information function, for \( \forall a \in AT \), \( \forall x \in U \), \( f_a(x) = f(x, a) \in V_a \). If it contains at least one attribute, say \( a \), its domain is \( V_a \), the value of an object at attribute \( a \) is \( * \) (usually \( * \) is used to represent unknown attribute), then we say the information system \( S \) is incomplete, otherwise complete.

**Definition 1.** Let \( S = (U, AT, V, f) \) be an incomplete information system [1]. \( A \subseteq AT \) is any attribute subset. The tolerance relation referring to \( A \) is defined as

\[
T_A = \{(x, y) \in U^2 : \forall a \in A, f_a(x) = f_a(y) \lor f_a(x) = * \lor f_a(y) = *\}
\]

where \( f_a(x) \) represents the value of object \( x \) at attribute \( a \).

For \( \forall x \in U \), the tolerance class of \( x \) is denoted by

\[
T_A(x) = \{y \in U : (x, y) \in T_A\}
\]

**Definition 2.** Let \( S \) be an incomplete information system. \( A \subseteq AT \). Then, for \( \forall X \subseteq U \), the upper approximation and lower approximation of \( X \) in terms of \( T_A \) are expressed by \( \overline{T_A(X)} \) and \( \underline{T_A(X)} \), respectively, where,

\[
\overline{T_A(X)} = \{x \in U : T_A(x) \cap X \neq \emptyset\}
\]

\[
\underline{T_A(X)} = \{x \in U : T_A(x) \subseteq X\}
\]

**Definition 3.** Let \( S \) be an incomplete information system. \( A \subseteq AT \). The similarity relation [2] referring to \( A \) is denoted as

\[
S_A = \{(x, y) \in U^2 : \forall a \in A, f_a(x) = f_a(y) \lor f_a(x) = * \lor f_a(y) = *\}
\]

We can clearly see that \( S_A \) is reflexive and transitive, but not necessarily symmetric. According to the definition of similarity relation, we can then define two sets for any object \( x \): The set of objects similar to \( x \), denoted by \( S_A(x) \), the set of objects to which \( x \) is similar, denoted by \( S_A^1(x) \) respectively, where

\[
S_A(x) = \{y \in U : (x, y) \in S_A\}
\]

\[
S_A^1(x) = \{y \in U : (x, y) \in S_A\}
\]

**Definition 4.** Let \( S \) be an incomplete information system. \( A \subseteq AT \). Then, for \( \forall X \subseteq U \), the upper approximation and lower approximation of \( X \) in terms of the similarity relation \( S_A \) are denoted by \( \overline{S_A(X)} \) and \( \underline{S_A(X)} \) respectively, where,

\[
\overline{S_A(X)} = \{x \in U : S_A^1(x) \subseteq X\}
\]

\[
\underline{S_A(X)} = \{x \in U : S_A^1(x) \subseteq X\}
\]

Through further study on relationships between tolerance and similarity relation, Guoyin Wang recognized of that the needing conditions of tolerance relation are too loose, and it is subject to grouping two objects, which do not have any same attribute value, into an indistinguishable block. On the contrary, the needing conditions of similarity relation are too strict, and this is subject to dividing two objects which are very similar but only with a slight bit of incomplete information into different blocks. This results in two extreme conclusions. Regarding the above two facts, he proposed limited tolerance relation [5].

**Definition 5.** Let \( S \) be an incomplete information system. \( A \subseteq AT \). The limited tolerance relation [5] in terms of \( A \), denoted by \( L_A \), is defined by

\[
L_A = \{(x, y) \in U^2 : \forall a \in A, f_a(x) = f_a(y) = * \lor (f_a(x) \neq * \land (f_a(y) \neq * \Rightarrow f_a(x) = f_a(y)))\}
\]

where \( P_a(x) = \{a \in A : f_a(x) \neq \emptyset\} \).

The block grouped by limited tolerance relations is between that by tolerance relation and that by similarity relation. It excludes the weakness of loose requirement in tolerance relation by the needing of that they should have the same value when two objects are all not empty at an attribute. At the same time, it deletes the requirement in similarity relation that \( y \) could not be more incomplete than \( x \). That is to say, it relaxes the needing conditions of similarity relation, and enhanced the needing conditions on tolerance relation.

### III. TWO KINDS OF VPRST MODELS

In the limited tolerance relation, when the values of two different objects on all attributes are empty, this only illustrates they have indiscernible possibility, but this possibility is often relatively small. Another situation is that the values of two objects are only the same on one attribute, and the remaining values are not comparable and they are still regarded as in a class or block. When the attribute is large, this condition is obviously still too loose.

**A. An Improved Limited and VPRS Model**

Realizing that the needing condition of limited tolerance relation is still not restrictive, we suggested a limited and
variable precision classification model [6] as:

Definition 6. Let \( S \) be an incomplete information system. \( \mathcal{A} \subseteq \mathcal{AT} \). The variable precision classification relation [6] in terms of \( \mathcal{A} \) is denoted by \( V^p_\alpha \) where,

\[
V^p_\alpha = \{(x, y) \in \mathcal{U}^2 : \forall \alpha \in P(x) \cap P(y) \}
\]

\[
(f(x) = f(y)) \wedge |P(x) \cap P(y)|(|P(x)| \geq \alpha) \cup I_U \tag{11}
\]

where \( \alpha \in [0,1] \), \( | \cdot | \) represents the cardinality of the set, and \( I_U = \{(x, x) : x \in \mathcal{U} \} \).

It is easy to see that \( V^p_\alpha \) is of only reflexivity, but not necessarily of symmetry and transitivity. In the limited tolerance relation, \( x = \{*,1,*, 2,3,*,1,*\} \) and \( y = \{1,*,0,*,*,1,*\} \) are recognized to be belonging to the same class. However, \( x \) and \( y \) have the same value at only one attribute of the eight ones. Therefore, we have the reason of believing that their belonging to the same class is not possible and putting them into a class becomes very farfetched. If \( \alpha = 0.1 \), then \( (x, y) \notin V^p_\alpha \) and \( (y, x) \notin V^p_\alpha \). That is, we can separate them into two categories by using variable precision relation. By this, we can see that variable precision limited tolerance relation is actually a modified form and is more realistic.

Because \( V^p_\alpha \) is not always symmetric, \( \{y \in \mathcal{U} : (x, y) \in V^p_\alpha \} \) may not be the same as \( \{y \in \mathcal{U} : (x, y) \in V^p_\alpha \} \). Like Definition 3 and 4 to similar relation and dislike the related definition in [6], the following two definitions are given.

Definition 7. Let \( \mathcal{S} \) be an incomplete information system. \( \mathcal{A} \subseteq \mathcal{AT} \). Then, for \( \forall x \in \mathcal{U} \), the set of objects limitedly tolerant to \( x \) with variable precision \( \alpha \), denoted by \( V^{\text{lt}}_\alpha(x) \), and the set of objects to which \( x \) is limitedly tolerant with variable precision \( \alpha \), denoted by \( V^{\text{lt}}(x) \), are respectively defined by:

\[
V^{\text{lt}}_\alpha(x) = \{y \in \mathcal{U} : (y, x) \in V^p_\alpha\} \tag{12}
\]

\[
V^{\text{lt}}(x) = \{x \in \mathcal{U} : V^{\text{lt}}_\alpha(x) \subseteq X\} \tag{13}
\]

Definition 8. Let \( \mathcal{S} \) be an incomplete information system. \( \mathcal{A} \subseteq \mathcal{AT} \). Then, for \( \forall X \subseteq \mathcal{U} \), the upper approximation and lower approximation of \( X \) in terms of \( V^\alpha \) are denoted by \( V^\alpha(X) \) and \( V_\alpha(X) \) respectively, where

\[
V^\alpha(X) = \bigcup_{\alpha \in \mathcal{A}} V^\alpha_\alpha(X) \tag{14}
\]

\[
V_\alpha(X) = \{x \in \mathcal{U} : V^{\text{lt}}_\alpha(x) \subseteq X\} \tag{15}
\]

Theorem 1. Let \( \mathcal{S} \) be an incomplete information system. For \( \forall A \subseteq \mathcal{AT} \), \( \forall x \in \mathcal{U} \), \( \forall X \subseteq \mathcal{U} \), we have

i. \( S^A_j(x) \subseteq V^{1_{\alpha}}(x) \subseteq T_j(x), S^A(x) \subseteq V^\alpha_j(x) \subseteq T_j(x) \) \tag{16}

ii. \( T_j(X) \subseteq V^\alpha(X) \subseteq S_j(X) \) \tag{17}

iii. \( S_j(X) \subseteq \overline{V^\alpha(X)} \subseteq T_j(X) \) \tag{18}

Proof.

For any \( y \in S^A_j(x) \), we have \((x, y) \in S^A_j(x)\)

\[
\Rightarrow \forall \alpha \in A(f(x) = f(y) \lor f(x) = *)
\]

\[
\Rightarrow \forall \alpha \in (P(x) \cap P(y))(f(x) = f(y)) \wedge (P(x) \subseteq P(y))
\]

\[
\Rightarrow \forall \alpha \in (P(x) \cap P(y))(f(x) = f(y)) \wedge |P(x)| \geq \alpha \Rightarrow (x, y) \in V^\alpha_j(x)
\]

Thus, \( y \in T_j(x) \) So \( V^{1_{\alpha}}(x) \subseteq T_j(x) \).

For any \( y \in V^\alpha_j(x) \), we have

\[
(x, y) \in V^\alpha_j(x) \Rightarrow \forall \alpha \in (P(x) \cap P(y))(f(x) = f(y)) \wedge |P(x)| \geq \alpha \Rightarrow (x, y) \in V^\alpha_j(x)
\]

Thus, \( y \in T_j(x) \) So \( V^\alpha_j(x) \subseteq T_j(x) \).

For any \( y \in V^{1_{\alpha}}(x) \), we have

\[
(x, y) \in V^{1_{\alpha}}(x) \Rightarrow \forall \alpha \in (P(x) \cap P(y))(f(x) = f(y)) \wedge |P(x)| \geq \alpha \Rightarrow (x, y) \in V^\alpha_j(x)
\]

Thus, \( y \in T_j(x) \) So \( V^{1_{\alpha}}(x) \subseteq T_j(x) \).

From \( V^{1_{\alpha}}(x) \subseteq T_j(x) \), \( V^\alpha_j(x) \subseteq T_j(x) \) in the above, we can infer that

\[
V^{1_{\alpha}}(x) \cup V^\alpha_j(x) \subseteq T_j(x).
\]
ii. By $S_1^2(x) \subseteq V_1^{-1,0}(x) \subseteq T_1(x)$, for any $y \in T_1(x)$, we have $T_1(y) \subseteq X$. For $V_1^{-1,0}(y) \subseteq T_1(y)$, thus we have $V_1^{-1,0}(y) \subseteq X$. Therefore, $y \in V_1^{-1,0}(X)$, and then $T_1(x) \subseteq V_1^{-1,0}(X)$. From $S_1^2(y) \subseteq V_1^{-1,0}(y)$, we also can get $V_1^{-1,0}(y) \subseteq X$, $S_1^2(y) \subseteq X$ and then $y \in \overline{S_1^2(X)}$ from $y \in V_1^{-1,0}(X)$. So $V_1^{-1,0}(X) \subseteq \overline{S_1^2(X)}$.

iii. By definitions, $\overline{S_2(x)} = \cup_{\in X} S_2(x) = \cup_{\in X} V_2^0(x)$, $\overline{T_3(x)} = \{y \in U: T_3(y) \cap X \neq \emptyset\}$. For any $y \in \overline{S_2(x)}$, we have that for some $x \in X$, $y \in S_2(x)$ and then $(x, y) \in S_2$. That is, 

$$\forall a \in A, f_a(x) = f_a(y) \Rightarrow \forall a \in (P_3(x) \cap P_3(y)) (f_a(x) = f_a(y)) \wedge (P_3(y) \subseteq P_3(x)) \\
\Rightarrow \forall a \in (P_3(y) \cap P_3(x)) (f_a(y) = f_a(x)) \\
\Rightarrow \forall a \in (P_3(y) \cap P_3(x)) (f_a(x) = f_a(y)) \\
\Rightarrow \forall a \in (P_3(y) \cap P_3(x)) (f_a(x) = f_a(y)) \Rightarrow (y, x) \in V_2^0 \\
\Rightarrow y \in V_2^0(x) \subseteq \cup_{\in X} V_2^0(x) = \overline{S_2(X)}$$

So $\overline{S_2(x)} \subseteq \overline{V_2^0(x)}$. For any $y \in \overline{V_2^0(X)} = \cup_{\in X} V_2^0(x)$, we have that for some $x \in X$, $(y, x) \in V_2^0$.

$$\forall a \in (P_3(y) \cap P_3(x)) (f_a(x) = f_a(y)) \\
\wedge (P_3(y) \subseteq P_3(x)) \\
\Rightarrow \forall a \in (P_3(y) \cap P_3(x)) (f_a(x) = f_a(y)) \\
\Rightarrow (y, x) \in T_3 \Rightarrow y \in T_3(x), x \in T_3(y) \\
\Rightarrow T_3(y) \cap X \supseteq \{x\}$, i.e. $T_3(y) \cap X \neq \emptyset$, and then $y \in \overline{T_3(x)}$.

$$\overline{V_2^0(X)} \subseteq \overline{T_3(x)}$$

**Lemma 1.** Let $\bar{S}$ be an incomplete information system. For $\forall A \subseteq AT$, we have 

i. $T_1 = \{(x, y) \in U^2: \forall a \in P_1(x) \cap P_1(y) \\
(f_a(x) = f_a(y)) \}$

(19) 

ii. $S_2 = \{(x, y) \in U^2: \forall a \in P_2(x) \cap P_2(y) \\
(f_a(x) = f_a(y)) \wedge (P_2(y) \subseteq P_2(x)) \}$

(20)

**Proof.**

i. Because $\forall a \in P_1(x) \cap P_1(y)$, $(f_a(x) = f_a(y))$ is logically equivalent to $\forall a \in A (f_a(x) = f_a(y)) = f_a(y) \wedge f_a(x) = f_a(y)$, it is hold.

ii. $\forall a \in P_2(x) \cap P_2(y)$, $(f_a(x) = f_a(y)) \wedge (P_2(y) \subseteq P_2(x))$ is also an equivalent expression of $\forall a \in A (f_a(x) = f_a(y))$ and $f_a(x) = f_a(y)$, which excludes the cases of $f_a(x) \neq f_a(y)$ and $f_a(y) \neq f_a(y)$.

**B. An Improved Symmetric Limited and VPRS Model**

For objects $x = \{\ast, \ast, \ast, \ast, \ast, \ast, \ast, \ast\}$ and $y = \{\ast, \ast, \ast, \ast, \ast, \ast, \ast, \ast\}$, they cannot be discriminated by tolerance, similarity and limited tolerance relation. By Definition 6 and Definition 7, no matter which value $\alpha$ takes, as long as we take the attribute subset $A$ containing the first attribute, they are still regarded as the same class. But the fact that these two objects belong to the same class is hardly possible since they have only one attribute value identical and have many null values. In order to solve this problem, an improved limited and variable precision rough set model with symmetry is proposed [7], in which, object relation is of symmetry. It extends the tolerance rough set model.

**Definition 9.** Let $S = (U, AT, V, f)$ be an incomplete information system. For $\forall x, y \in U, A \subseteq AT$, we define

$$\mu(x, y) = \left\{ \begin{array}{ll}
\frac{|P_1(x) \cap P_1(y)|}{\min(|P_1(x)|, |P_1(y)|)}, & \text{if } \min(|P_1(x)|, |P_1(y)|) \neq 0, \\
0, & \text{if } \min(|P_1(x)|, |P_1(y)|) = 0.
\end{array} \right. \quad (21)$$

**Definition 10.** Let $S = (U, AT, V, f)$ be an incomplete information system. For $\forall x, y \in U, A \subseteq AT$, $0 \leq \alpha \leq 1$, a binary relation is called an improved symmetric limited and variable precision tolerance relation, where

$$NL_\alpha^y = \{(x, y) \in U^2: \forall a \in P_3(x) \cap P_3(y) \\
(f_a(x) = f_a(y)) \wedge (f_a(y) = f_a(x)) \wedge \mu(x, y) \geq \alpha \} \cup I_U \quad (22)$$

From this definition, it is clear that the proportion of the number of non null common attributes to the total non null attributes of objects $x, y$ should greater or equal to $\alpha$, reaching at above some threshold. Definition 10 is different with Definition 1 in [9] for that here it is ensured to be reflexive by union with $I_U$. It is also different with Definition 6; symmetry is satisfied here but not there. We can see that this symmetric limited and variable precision tolerance relation is reflexive and symmetric but maybe not transitive. So $NL_\alpha^y$ is a tolerance relation consistent or a compatible relation in discrete mathematics with any value $\alpha$ in $[0, 1]$. $\alpha$ maybe is set to the filling factor of the system.

**Theorem 3.** Let $S$ be an incomplete information system. $\forall A \subseteq AT$. Then, we can get $NL_\alpha^y$ and $NL_\alpha^y = T_3$, and $NL_\alpha^y = R_3$, where

i. $T_3 = \{(x, y) \in U^2: \forall a \in P_3(x) \cap P_3(y) (f_a(x) = f_a(y)) \}

(23)$

ii. $R_3 = \{(x, y) \in U^2: \forall a \in P_3(x) \cap P_3(y) (f_a(x) = f_a(y)) \}$
\[(f_a(x) = f_a(y)) \land (P_a(x) \subseteq P_a(y) \lor P_a(y) \subseteq P_a(x) \lor P_a(y) \neq \emptyset) \cup I_U) \]

(24)

**Proof.**

i. Because \(NL_a^0 = \{(x, y) \in U^2 : \forall a \in P_a(x) \cap P_a(y)(f_a(x) = f_a(y)) \land \mu(x, y) \geq 0\} \cup I_U\)

\[= \{(x, y) \in U^2 : \forall a \in P_a(x) \cap P_a(y)(f_a(x) = f_a(y)) \} = T_i\]

So it is right.

ii. Because \(\mu(x, y) = 1\) if and only if \[
\min\{|P_a(x)|, |P_a(y)|\} \neq 0 \land \frac{\min\{|P_a(x)|, |P_a(y)|\}}{\min\{|P_a(x)|, |P_a(y)|\}} = 1.
\]

Thus, \[
|P_a(x) \cap P_a(y)| = \min\{|P_a(x)|, |P_a(y)|\}.
\]

\[
P_a(x) \subseteq P_a(y) \lor P_a(y) \subseteq P_a(x) \lor P_a(x) \neq \emptyset \]

\[
P_a(x) \subseteq P_a(y) \lor P_a(y) \subseteq P_a(x) \lor P_a(x) \neq \emptyset \]

So \(NL_a^i = \{(x, y) \in U^2 : \forall a \in P_a(x) \cap P_a(y)(f_a(x) = f_a(y)) \land \mu(x, y) = 1\} \cup I_U\)

\[= \{(x, y) \in U^2 : \forall a \in P_a(x) \cap P_a(y)(f_a(x) = f_a(y)) \land (P_a(x) \subseteq P_a(y) \lor P_a(y) \subseteq P_a(x)) \land (P_a(x) \neq \emptyset \lor P_a(y) \neq \emptyset) \cup I_U\}
\]

i.e. \(NL_a^i = R_a^i\). \(R_a^i\) is really a relation with reflexivity, symmetry.

Compared with Definition 6 and Definition 7, the improved limited and variable precision relation is a tolerance relation.

**Definition 11.** Let \(S\) be an incomplete information system. \(\forall A \subseteq AT\). Then, for \(\forall x \in U\), the tolerance class of \(x\), denoted by \(L_a^i(x)\), is defined by

\[
NL_a^i(x) = \{y \in U : (x, y) \in NL_a^i\}
\]

(25)

**Definition 12.** Let \(S\) be an incomplete information system. For \(\forall A \subseteq AT\) and \(\forall x \in U\), the upper approximation and lower approximation of \(X\), denoted by \(NL_a^i(X)\) and \(NL_a^i(X)\) respectively, are defined by

\[
NL_a^i(X) = \{x \in U : NL_a^i(x) \cap X \neq \emptyset\}
\]

(26)

\[
NL_a^i(X) = \{x \in U : NL_a^i(x) \subseteq X\}
\]

(27)

**Theorem 4.** Let \(S\) be an incomplete information system. \(\forall A \subseteq AT\). If \(0 \leq \alpha \leq \alpha_i \leq 1\), then for \(\forall x \in U\), \(\forall X \subseteq U\), we have

i. \(NL_a^i(x) \subseteq NL_a^i(x)\)

ii. \(NL_a^i(X) \subseteq NL_a^i(X)\)

(28)

iii. \(NL_a^i(X) \subseteq NL_a^i(X)\)

(29)

**Proof.**

i. For \(\forall y \in NL_a^i(x)\), we have \(\mu(x, y) \geq \alpha_i\). Because \(\alpha_i \leq \alpha\), \(\mu(x, y) \geq \alpha\). That is \(y \in NL_a^i(x)\).

So \(NL_a^i(x) \subseteq NL_a^i(x)\).

For \(\forall y \in NL_a^i(X)\), according to the Definition 12, we have \(NL_a^i(Y) \cap X \neq \emptyset\). Because from \(i\) we have \(NL_a^i(Y) \subseteq NL_a^i(Y)\); therefore, \(NL_a^i(Y) \cap X \neq \emptyset\). It follows that \(y \in NL_a^i(X)\). Thus, \(NL_a^i(X) \subseteq NL_a^i(X)\) for \(y \in NL_a^i(X)\).

For \(\forall y \in NL_a^i(X)\), according to the Definition 12, we have \(NL_a^i(Y) \subseteq X\). Because from \(i\) we have \(NL_a^i(Y) \subseteq NL_a^i(Y)\); therefore, \(NL_a^i(Y) \subseteq X\). It follows that \(y \in NL_a^i(X)\). Thus, \(NL_a^i(X) \subseteq NL_a^i(X)\) for \(y \in NL_a^i(X)\) is arbitrarily chosen.

**Theorem 5.** Let \(S\) be an incomplete information system. \(\forall A \subseteq AT\). For \(\forall x \in U\), \(\forall X \subseteq U\), then

i. \(NL_a^i(x) \subseteq X \subseteq NL_a^i(X)\)

(30)

ii. \(V_{-1} \subseteq NL_a^i(x) \subseteq T_a(x)\)

(31)

iii. \(V_{-1} \subseteq NL_a^i(X) \subseteq T_a(X)\)

(32)

iv. \(T_a(X) \subseteq NL_a^i(X) \subseteq V_a(X)\)

(33)

**Proof.**

i. It can be proved to be true by the definition.

ii. For any \(y \in V_{-1}\), by Definition 11 and 12, we have \(y \in V_{-1} \subseteq T_a\), that is, we have:

\[
1. \forall a \in P_a(x) \cap P_a(y), (f_a(x) = f_a(y)).
\]

\[
\cup |P_a(x) \cap P_a(y)|/|P_a(x)| \geq \alpha.
\]

Notice that \(\cup\) can be transformed to

\[
\frac{|P_a(x) \cap P_a(y)|}{|P_a(x)|} \geq \alpha.
\]

That is

\[
\frac{|P_a(x) \cap P_a(y)|}{\min\{|P_a(x)|, |P_a(y)|\}} \geq \alpha \cdot \frac{|P_a(x)|}{\min\{|P_a(x)|, |P_a(y)|\}}.
\]

Due to \(A\) is a subset of attributes, we have

\[
\frac{|P_a(x)|}{\min\{|P_a(x)|, |P_a(y)|\}} \geq 1.
\]

That is

\[
\frac{|P_a(x) \cap P_a(y)|}{\min\{|P_a(x)|, |P_a(y)|\}} \geq \alpha.
\]
In summary, we can get \((x, y) \in NL^a_d \) , so we have 
\( y \in NL^a_d (x) \) . Thus \( V_i^{-1/3}(x) \subseteq NL^a_d(x) \).

For any \( y \in NL^a_d(x) \) , by Definition 11 and 12, we have 
\((x, y) \in NL^a_d \) , that is, we have:

\[
\forall a \in P_a(x) \cap P_a(y) (f_a(x) = f_a(y)) \wedge \frac{|P_a(x) \cap P_a(y)|}{\min(|P_a(x)|, |P_a(y)|)} \geq \alpha
\]

Therefore, we have

\[
\forall a \in P_a(x) \cap P_a(y) (f_a(x) = f_a(y)), \text{ i.e. } (x, y) \in T_d.
\]

So \( NL^a_d(x) \subseteq T_d(x) \) for \( y \in NL^a_d(x) \) is arbitrarily selected from \( NL^a_d(x) \).

iii. For \( \forall y \in V_d^a(X) = \bigcup_{x \in X} V^a_d(x) \) , by Definition 6, 7, we have \( \exists x \in X \) \( (y, x) \in V^a_d \) , so

\[
y = x \lor \forall a \in P_a(x) \cap P_a(y) (f_a(x) = f_a(y)) \wedge |P_a(x) \cap P_a(y)| / |P_a(y)| \geq \alpha
\]

In the same proof of (1) (2), we have \( y \in NL^a_d(x) , x \in NL^a_d(y) \) . Thus \( NL^a_d(y) \cap X \supseteq \{ x \} \neq \emptyset \).

So \( y \in NL^a_d(X) \) . Therefore, \( V_d^a(X) \subseteq NL^a_d(X) \) is right.

For \( \forall y \in NL^a_d(X) \) , by Definition 8, we have \( NL^a_d(y) \cap X \neq \emptyset \) . By (ii), we have \( NL^a_d(y) \subseteq T_d(y) \) . So \( T_d(y) \cap X \neq \emptyset \).

By Definition 6, we have \( y \in T_d(X) \) . So \( NL^a_d(X) \subseteq TL_d(X) \) is right since \( y \) is arbitrarily selected from \( NL^a_d(X) \).

iv. For \( \forall y \in T_d(X) \) , by Definition 8, we have \( T_d(y) \subseteq X \) . By ii. we have \( NL^a_d(y) \subseteq T_d(y) \) , so \( NL^a_d(y) \subseteq X \) . By Definition 6, we have \( y \in NL^a_d(X) \) . So

\[
T_d(x) \subseteq NL^a_d(x) \text{ is right for } y \text{ is arbitrarily selected from } T_d^a(X). \]

For \( \forall y \in NL^a_d(X) \) , by Definition 8, we have \( NL^a_d(y) \subseteq X \) . By ii. we have \( V_i^{-1/3}(y) \subseteq NL^a_d(y) \) , so \( V_i^{-1/3}(y) \subseteq X \).

By Definition 6, we have \( y \in V_i^a (X) \) . So \( NL^a_d(X) \subseteq V_i^a (X) \) is right for \( y \) is arbitrarily selected from \( NL^a_d(X) \).

Theorem 6. Let \( S \) be an incomplete information system. For \( \forall A \subseteq AT \) \( \forall X, Y \subseteq U \) , then

i. \( NL^a_d(X) \cap NL^a_d(Y) = NL^a_d(X \cap Y) \)

ii. \( NL^a_d(X) \cup NL^a_d(Y) \subseteq NL^a_d(X \cup Y) \)

Proof.

i. \( y \in NL^a_d(X) \cap NL^a_d(Y) \)

\[
\Rightarrow y \in NL^a_d(X) \cap y \in NL^a_d(Y) \Rightarrow NL^a_d(y) \subseteq X \cap NL^a_d(y) \subseteq Y
\]

\[
\Rightarrow NL^a_d(y) \subseteq X \cap Y \Rightarrow y \in NL^a_d(X \cap Y)
\]

ii. \( y \in NL^a_d(X) \cup NL^a_d(Y) \Rightarrow y \in NL^a_d(X) \cup y \in NL^a_d(Y) \)

\[
\Rightarrow NL^a_d(y) \subseteq X \cup NL^a_d(y) \subseteq Y \Rightarrow y \in NL^a_d(X \cup Y)
\]

Theorem 7. Let \( S \) be an incomplete information system. For \( \forall A \subseteq AT \). For \( \forall X, Y \subseteq U \) , then

i. \( NL^a_d(X \cap Y) \subseteq NL^a_d(X) \cap NL^a_d(Y) \)

ii. \( NL^a_d(X \cup Y) \subseteq NL^a_d(X) \cup NL^a_d(Y) \)

Proof.

i. \( y \in NL^a_d(X \cap Y) \)

\[
\Rightarrow NL^a_d(y) \cap (X \cap Y) \neq \emptyset
\]

\[
\Rightarrow NL^a_d(y) \cap X \neq \emptyset \land NL^a_d(y) \cap Y \neq \emptyset
\]

\[
\Rightarrow y \in NL^a_d(X) \land y \in NL^a_d(Y)
\]

\[
\Rightarrow y \in NL^a_d(X) \land NL^a_d(Y)
\]

ii. \( y \in NL^a_d(X \cup Y) \)

\[
\Rightarrow NL^a_d(y) \cap (X \cup Y) \neq \emptyset
\]

\[
\Rightarrow NL^a_d(y) \cap X \neq \emptyset \lor NL^a_d(y) \cap Y \neq \emptyset
\]

\[
\Rightarrow y \in NL^a_d(X) \lor y \in NL^a_d(Y)
\]

\[
\Rightarrow y \in NL^a_d(X) \lor NL^a_d(Y)
\]

IV. RULE GENERALIZATION AND CASE STUDY

The key problem in rough set is knowledge reduction and rule generalization. Through simplified information system, we can obtain intuitive decision algorithm and make decision or classification. Under the leading guidance of variable precision rough set, we can often design some heuristic reduction algorithms to get reducts and then to generate rules from them. However, the reducts are ordinarily non-exact and the number of reducts is many, so rules may also diverse. In order to deduce the whole determinative and probable rules, an effective approach is to use discriminatory matrices on the given information system by applying upper and lower approximations of decision class.

Definition 13. An incomplete decision system \( S = (U, AT = C \cup D, V, f) \) is given, where \( C \) is the conditional attribute set, \( D \) is the decision attribute set, \( AT = C \cup D \) is the whole set of attributes. \( C \cap D = \emptyset \) , \( V = \bigcup_{a \in AT} V_a \) is the value set and \( V_a \) is the subset of values at attribute \( a \) . * \( \notin V_a (d \in D) \). Suppose \( A \subseteq C \), \( U / IND(D) = \{ D_1, D_2, \ldots, D_n \} \) is a partition on \( U \). Referring to [13], [14], a matrix with respect to the decision class \( D_k (k = 1, 2, \ldots, m) \) with \( |L^*(D_k)| \) rows and \(|U - D_k| \) columns
is formed by defining its element $M^k_{x_0}$ as:

$$M^k_{x_0} = \begin{cases} 
(a, f_a(x)) : f_a(x) \neq * \land f_a(y) \neq * \\
\emptyset, \\
\land f_a(x) \neq f_a(y)
\end{cases}$$

(39)

where $x \in L_k^a(D_k)$, $y \in U - D_k$ ($k = 1, 2, ..., m$), $a \in P_a(x) \cap P_a(y)$. Let $B_k = \land\cup M^k_{x_0}(M^k_{x_0} \neq \emptyset)$, $B_k$ is called a decision function referring to $D_k$. $B_k$ is simplified to a disjunction normal formula using absorbing law in logic. Each conjunctive factor makes a rule which is determine, but may not absolutely determine, due to the model is variable precision conjunctive factor makes a rule which is determine, but may not absolutely determine, due to the model is variable precision conjunctive factor makes a rule which is determine, but may not absolutely determine, due to the model is variable precision conjunctive factor makes a rule which is determine, but may not absolutely determine, due to the model is variable precision conjunctive factor makes a rule which is determine, but may not absolutely determine, due to the model is variable precision.

In a very similar way, if we alternatively use $x \in L_k^a(D_k)$, $y \in U - L_k^a(D_k)$ ($k = 1, 2, ..., m$), $a \in P_a(x) \cap P_a(y)$ and $D_k(x) \neq D_k(y)$, as the condition to construct elements referring to $D_k$ and then form another similar discernibility matrix, we can generate probable rules.

In order to comparatively analyze, we adopt a real incomplete information system in [4] shown in Table I to perform some computations, where $AT = C \cup D$, $C = \{a, b, c, d\}$, $D = \{e\}$. At first we have:

$$D_0 = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8, O_9\}$$

$$D_1 = \{O_1, O_2, O_3, O_4, O_5, O_6, O_7, O_8, O_9, O_{10}\}$$

<table>
<thead>
<tr>
<th>$U$</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_6</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_8</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O_9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

According to Definition 11, we obtain:

$$\bar{N}_0^5(O_1) = \{O_1, O_{10}\}$$

$$\bar{N}_0^6(O_1) = \{O_1, O_{10}\}$$

$$\bar{N}_0^7(O_1) = \{O_1, O_{10}\}$$

$$\bar{N}_0^8(O_1) = \{O_1, O_{10}\}$$

$$\bar{N}_0^9(O_1) = \{O_1, O_{10}\}$$

$$\bar{N}_0^{10}(O_1) = \{O_1, O_{10}\}$$

According to Definition 11, we obtain:

$$N_1^5(O_1) = \{O_1, O_{10}\}$$

$$N_1^6(O_1) = \{O_1, O_{10}\}$$

$$N_1^7(O_1) = \{O_1, O_{10}\}$$

$$N_1^8(O_1) = \{O_1, O_{10}\}$$

$$N_1^9(O_1) = \{O_1, O_{10}\}$$

$$N_1^{10}(O_1) = \{O_1, O_{10}\}$$

$$\bar{N}_1^5(D_0) = \{O_0\}$$

$$\bar{N}_1^6(D_0) = \{O_0\}$$

$$\bar{N}_1^7(D_0) = \{O_0\}$$

$$\bar{N}_1^8(D_0) = \{O_0\}$$

$$\bar{N}_1^9(D_0) = \{O_0\}$$

$$\bar{N}_1^{10}(D_0) = \{O_0\}$$

So, $\Phi$’s discernibility matrix for relatively determine rule generation by using $x \in \bar{N}_0^{10}(D_0)$, $y \in U - D_0$ is as in Table II. Thus, relatively determine rules generated from Table II are: $(a, 1) \rightarrow (e, \Phi)$. In the same way, we can also construct $\Psi$’s discernibility matrix for relatively determine rule generation by using $x \in \bar{N}_0^{10}(D_0)$, $y \in U - D_\Psi$ in Table III.

<table>
<thead>
<tr>
<th>$U$</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O_2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O_3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O_5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O_6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O_7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O_8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O_9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Relatively determine rules for decision class $\Psi$ gotten from Table III for decision class $\Psi$ are: $(a, 2) \land (b, 3) \land (d, 1) \rightarrow (e, \Psi)$; $(b, 0) \rightarrow (e, \Psi)$.
Precision rough set model in [6] controls classification of the and similarity relation are more commonly used. The variable extended rough set models are proposed. The tolerance relation of knowledge, but it is not symmetric. Although the limited and variable precision tolerance model in [11] is symmetric, but the model is more general and more flexible to get the granularity knowledge representation simpler and efficient.

<table>
<thead>
<tr>
<th>TABLE III</th>
<th>DISCERNIBILITY MATRIX FOR RELATIVELY DETERMINE RULE GENERATION TO DECISION CLASS ( \Psi )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( O_1 )</td>
<td>( (a,2) )</td>
</tr>
</tbody>
</table>

\( \Phi \)'s discernibility matrix for relatively probable rule generation by using \( x \in N_{\Phi}^E(D_\Phi) \), \( y \in U - N_{\Phi}^E(D_\Phi) \) and \( f(x) \neq f(y) \) is as in Table IV. Thus, relatively probable rules generated from Table IV are: \( (b,2) \vee (c,1) \rightarrow (e) \); \( (b,3) \wedge (d,0) \rightarrow (e) \); \( (c,2) \wedge (d,0) \rightarrow (e) \); \( (b,2) \rightarrow (e) \); \( (a,3) \wedge (d,3) \rightarrow (e) \); \( (a,1) \rightarrow (e) \). In the same way, we can also construct \( \Psi \)'s discernibility matrix for relatively probable rule generation by using \( x \in N_{\Psi}^E(D_\Psi) \), \( y \in U - N_{\Psi}^E(D_\Psi) \) and \( f(x) \neq f(y) \) in Table V.

<table>
<thead>
<tr>
<th>TABLE IV</th>
<th>DISCERNIBILITY MATRIX FOR RELATIVELY PROBABLE RULE GENERATION TO ( \Phi )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( O_1 )</td>
<td>( (a,3) )</td>
</tr>
</tbody>
</table>

\( \Psi \)'s discernibility matrix for relatively probable rules for decision class \( \Psi \) gotten from Table V for decision class \( \Psi \) are: \( (a,2) \rightarrow (e, \Psi) \); \( (a,3) \rightarrow (e, \Psi) \).

V. CONCLUSION
Due to the incompleteness of data in the real world, different extended rough set models are proposed. The tolerance relation and similarity relation are more commonly used. The variable precision rough set model in [6] controls classification of the incomplete system by setting a threshold value, so that the model is more general and more flexible to get the granularity of knowledge, but it is not symmetric. Although the limited and variable precision tolerance model in [11] is symmetric, but the two models consider that two small probability equivalent objects are indiscernible. The model proposed in this paper overcomes this shortcoming and gets a more accurate and reasonable result. Based on this work, the next step is to do further exploration on this new model and makes the knowledge representation simpler and efficient.

ACKNOWLEDGMENT
This work is sponsored by Chinese NFS (No. 61100116) and a Foundation of Graduate Department of Jiangsu University of Science and Technology.

REFERENCES

Chen Wu, born in 1962 in Hubei Province in China, gotten BS in major computational mathematics from the Wuhan University in Hubei Province in China in 1982, MS in major applied mathematics in the Wuhan Digital Institute in Hubei Province in China, in 1985, Ph.D in major pattern recognition and system control from the Nanjing University of Science and Technology in Jiangsu Province in China in 2007, is working as a professor with the school of computer science and engineering at Jiangsu university of science and technology, Zhenjiang, Jiangsu Province in China. Major study fields: rough set, data mining, pattern recognition. He was as a visiting professor in 2006 at the school of information science in Drexel University in Philadelphia, PA, USA. He has published several research papers in many journals such as Kybernetes, Computational Intelligent Systems.

Youquan Xu, born in 1988 in Anhui Province in China, gotten BS in major computer science from the Anhui University in Anhui Province in China in 2010, is a post graduate student, majoring in computer science in the school of computer science and engineering at Jiangsu university of science and technology. Research area: rough set.

Dandan Li, born in 1991 in Jiangsu Province in China, gotten BS in major computer science from the Jiangsu University in Jiangsu Province in China in 2011, is a post graduate student, majoring in computer science in the school of computer science and engineering at Jiangsu university of science and technology. Research area: decision making.
Ronghua Yang, born in 1991 in Jiangsu Province in China, gotten BS in major computer science from the Jiangsu University in Jiangsu Province in China in 2011, is a post graduate student, majoring in computer science in the school of computer science and engineering at Jiangsu university of science and technology. Research area: data processing.

Lijuan Wang, born in 1981 in Jiangsu Province in China, gotten BS in major computer science from the Yangzhou University in Yangzhou City, Jiangsu Province in China in 2007, MS in major computer science in the Jiangsu university of science and technology, Zhenjiang , Jiangsu Province in China in 2009, Ph.D. in major pattern recognition and system control from the Nanjing University of Science and Technology in Nanjing City, Jiangsu Province in China in 2013, is working as an assistant professor with school of computer science and engineering at Jiangsu university of science and technology. Research area: rough set, data mining.