Abstract—Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.

Keywords—Pattern, SQL, learning, model.

I. INTRODUCTION

A understanding of the way novices approach SQL is essential in order to offer insights into the problems students encounter and to improve SQL teaching. Researchers have attempted to isolate those factors that impact on and influence SQL learning. Some point to inherent human factors [30], [31], [41] where others have focused on query language features and tried to explain how these affect the learning process [30], [31], [36], [40], [42], [43]. Even the effects of a particular teaching method have been studied [35]. While these studies have merit, our approach was to start off by considering human cognition as the initial focus, and to consider the impact of human cognition on SQL learning.

A. SQL Learning Model

To support SQL learning, we first have to consider what cognitive steps SQL writers engage in.

Reisner [29] proposed a SQL writing process whereby a user generates a set of lexical items and a query template, merging of the lexical items with the template to generate the final query as shown in Fig. 1. This model is also related to the idea of semantic and articulator distances as used in Liao and Palvia [20]. Mannino [23] proposed a simpler two-step model: progressing from problem statement to database representation, and from database representation to a database query language statement, as illustrated in Fig. 2.

Fig. 1 Query writing model adapted from [29]

Fig. 2 Mannino’s [23] Query Writing Model

Fig. 3 presents an alternative three-stage cognitive model of database query proposed by Schlager & Ogden [34]:

- **Query formulation** (stage 0): Decide what data they need to solve the problem. One example is “I need to know the average salary of employees who work in the sales department.” This stage relies on knowledge of the application domain.
- **Query translation** (stage 1): Use the output from stage 0 as input, and decide what elements of the data model are relevant, and what the necessary operations are. One example of the output of this stage is “The employee relation is needed, the column salary is to be selected and the average to be calculated and a restriction of working in the sales department must be specified on column department.” The output of this stage is usually retained internally by experts but written down by novices.
- **Query writing** (stage 2): For the example in the previous stage, to translate into SQL, would be: “select AVG (salary) from employee where...” This stage is heavily dependent on the particular query language’s syntax and semantics.

Fig. 3 Three stage cognitive model adapted from [34]
These models do not particularly address learner cognition and learning stages. SQL novices seem to lack a rich deep understanding of the language construct and the way in which such constructs are used to solve problems [25]. This suggests that Mannino’s [23] model might more accurately depict an expert query writing process than that of a novice. Novices may lack the strategic knowledge i.e. the ability to apply syntactic and semantic knowledge to solve novel problems [37]. Strategic knowledge supports stage 0 and stage 1 of the model in Fig. 2, and without it, a novice might very well go straight to stage 2, to the detriment of learning and subsequent query quality.

II. COGNITION & MENTAL MODELS

To develop SQL mastery, it is essential to consider the supporting cognition. According to Robins et al. [32], “learning” means the construction of schemas, where a schema is “a structured chunk of related knowledge”. Learning either constructs new schemas or modifies and combines existing schemas in order to produce new, more abstract schemas. A mental model is made up of a schema plus the cognitive processes for manipulating and modifying the knowledge stored in a schema [26]. In order to master SQL, query writers draw on a mental model that is constructed from the requisite concepts (syntax and semantics), together with an understanding of how to apply the concepts within a particular context.

Fig. 4 (a) The role of schemata in Problem Solving

Fig. 4 (b) the trial and error approach

Mere knowledge of SQL syntax and semantics is not sufficient to achieve mastery. Many students can parrot such knowledge in exams yet do not know how to apply it in context. What they appear to lack is an abstract construct which can be applied to a variety of matching contexts. The mental model, with its schemata building blocks, is iteratively constructed as learners write SQL during problem solving. This process is depicted in Fig. 4 (a). This depicts an ideal situation, where schemata are constructed during problem solving. What it does not convey is how the process can become derailed, and how best to ensure that problem-solving does indeed result in essential schemata formation.

In our combined years as database lecturers, the authors have frequently observed students engaging in the process depicted on the right of Fig. 3. These learners inhabit the bottom left triangle. The net effect is that schema are not constructed; for whatever reason learners experience difficulties matching the knowledge learnt in lectures with the knowledge required solving SQL problems. They fail to abstract principles and solve posed problems using a trial and error approach. They try using SQL constructs randomly without any perceivable strategy and without developing any deep understanding of the underlying principles. An understanding of why this is happening will inform our teaching process, and help us to design our instructional materials so that they will better support and encourage the schema construction process.

III. SQL LEARNING TAXONOMY

According to Cutts et al. [10] learning taxonomies provide researchers with an essential shared vocabulary. Probably the most widely applied taxonomy was proposed by Bloom [7]. Andreson et al. [6] proposed an updated version of Bloom’s taxonomy to correspond with the ways learning objectives are typically described as cognitive activities. They argue that students’ progress through Remembering; Understanding; Applying; Analysing; Evaluating and finally Creating stages. Gorman [15] proposes a simpler model, arguing a progression from an understanding of what, followed by how, then when and finally why.

The applicability of a number of learning taxonomies to Computer science has been considered [14], [18], [19], [39]. Lahinen [19], in particular, investigated whether a subject-specific taxonomy would be of more use to computer science instructors than the existing generic ones. Lahinen concluded that Bloom’s cognitive activities were indeed applicable to computing generally. Hence, there is some justification for applying them to SQL learning. Since Computing is essentially a skill-based subject, the three stages of Bloom, which comprise application of principles, are particularly important. These stages reflect the fact that problem solving is the essence of computing skill mastery. The fact that researchers recommend incorporating problem solving as a primary learning activity confirms this [1], [8], [16], [17], [21].

One could argue that solving problems and producing an effective and efficient solution is the core activity of the computer science practitioner. Computer science, at its core, involves modelling the real world, representing domains of the most varied nature and complexity, representing knowledge in general and dealing with processes and solutions to problems in such domains. Therefore, any proposed taxonomy should
have, at its core, problem solving, to be engaged in after the
basic knowledge is delivered and comprehended. We therefore
propose an SQL learning taxonomy, which models how
learners should assimilate specific SQL topics (Fig. 5). It
consists of four main areas, each of which map to the related
cognitive processes:

- **Remembering SQL Concepts**: includes the following
cognitive process: Recognizing and Recalling.
- **Comprehending SQL Concepts**: includes the process of
SQL Reading, Interpreting and Explaining.
- **Practicing SQL** (problem solving) this level consists of
three interleaving activities that represent SQL problem
solving:
 - Problem formulation (Analysis)
 - Problem translation (Synthesis): Differentiating,
 Organizing, Attributing and translation of the given
 problem
 - SQL Query writing (Application): Executing and
 Implementing query
 - SQL Query checking (Evaluation): Checking, Critiquing
 and evaluating the output results. For example, query
 debugging.
- **Creating** includes reflecting, making judgements, and
 conceivably constructing mental models. This includes,
 for example, query modification.

This entire process will undoubtedly be affected by factors
other than human cognition. The next step in understanding
the SQL learning process is to consider the cross-cutting
factors that affect SQL learners in general.

IV. CROSS-CUTTING FACTORS

The SQL learning taxonomy proposed in Fig. 5 depicts a
perfect learning model. It incorporates knowledge of human
cognition, but does not necessarily accommodate individual
learner differences. To identify the other factors that influence
SQL learnability we interviewed a group of participants who
had learnt SQL. In addition, a questionnaire was used to
collect feedback from another 75 students. Another
questionnaire collected feedback on teaching SQL from
fourteen experienced academics. Grounded Theory was used
to identify the factors in the responses, identifying themes
related to success in learning SQL.

The emergent themes were:

1. Learner attributes such as personal attitude, previous
 experience, lack of problem solving skills, and general
 skill acquisition abilities;
2. The features of the SQL language;
3. SQL-specific cognitive tasks involved in the problem-
solving process;
4. The instructional materials provided during teaching
 activities.

These themes are explored within the following subsections.

B. Learner Attributes

The role of personal attitude towards learning in general is
undoubtedly one of the most controversial and fascinating
areas of research. Researchers have proved that a personally
positive attitude towards learning plays a vital role in
educational settings and influences learning processes and
affects achievement [4], [28]. Some studies measured the
relationship between students’ achievements and personal
attitude towards learning mathematics [2], [9], [11], [13], [22].
The impact of negative attitudes among novices learning
programming languages has been highlighted as well [32],
[33].

We interviewed seven students and asked database
educators to complete an online questionnaire. The interview
questions sought to examine the relationship between personal
feelings and achieved SQL expertise. Five of the students
reported feeling slightly uncomfortable about using SQL and
only two were comfortable with SQL. Those who felt slightly
uncomfortable attributed this to a lack of practice. Students
claimed that they did not use SQL after completing their
database course and even within the course had limited
opportunities to practice. Some examples of their responses
are given in Table I.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>PARTICIPANTS’ RESPONSES REVEALING PERSONAL ATTITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“I do not have all that much experience with it, the only time that I have contact with it is only during class”</td>
<td></td>
</tr>
<tr>
<td>“I have learned specific things, not getting the chance to apply them, practicing the logic of it makes it easier”</td>
<td></td>
</tr>
<tr>
<td>“It needs practice, perhaps not very easy to stay motivated doing these concepts of harder nature”</td>
<td></td>
</tr>
</tbody>
</table>

The two students who did feel comfortable with SQL
attributed this either to their own attitude towards database
concepts in general, or to their accumulated experience with
SQL. They rated themselves as advanced SQL writers. One of
the students provided the following comment in this respect:

“I like the whole concepts of databases; I am very keen
in learning about databases rather than programming.”

This comment suggests a clear positive attitude towards
SQL, notably missing from the responses of those who were
not as comfortable with SQL. This finding supports the earlier
finding by [27] in terms of all database concepts:

“Our experience has demonstrated that beginning
database students are often lackadaisical, in terms of motivation, to grasp the precise meaning and definitions of key terms used in the database field.”

During this study, many students spontaneously attempted to relate their experience in learning programming languages to experiences learning SQL. This is evident from their responses as shown in Table II. Hence, the difference between imperative and object-oriented programming, on the one hand, and a functional paradigm, on the other, seemed to make SQL hard to understand and use. Apart from programming languages, other courses that might have an impact on SQL learning are mathematics courses. This was referred to in some of the responses provided by educators in the online questionnaire:

“Mathematical notions help (e.g. set theory) but vice versa, the mathematical notions can also follow learning database concepts.”

“Not enough knowledge about mathematics and logic.”

The knowledge of some concepts, such as relational database theory, database structure and relational algebra, might also have some impact on learners’ ability to master SQL concepts. Relational algebra courses are difficult to teach because they appear too theoretical, and do not have an obvious practical application. This was addressed in some of the responses provided by educators in the online questionnaire:

“Because of the relational algebra behind it, students struggle with relational algebra but not the SQL itself.”

Knowledge of query language syntax without an understanding of relational database structure can lead to expensive end-user mistakes [11].

C. SQL Features

Some participants reported experiencing difficulties with SQL syntax. This is shown in the relevant quotes provided by students and educators in Table III below.

The ordering of SQL syntax (SELECT...FROM...WHERE) is an unintuitive way of expressing a query. SQL is a declarative language that expresses what the desired result is, without the writer specifying how it is to be achieved. This is undeniably counter-intuitive to minds that are accustomed to specifying everything in intricate detail in other programming.

D. SQL-Specific Cognition

Felix [12] highlighted the relationship between the cognitive structure of a language and cognition involved in problem solving tasks. Hence, the development of SQL-specific problem solving skills must be considered. Table IV provides some quotes from educators related to applying SQL concepts in order to solve specific problems. Moreover, Soloway and Spohrer [38] observed that while students might know the individual statement syntax and semantics, they often fail to combine different features correctly. Some students reported writing simple SQL queries with ease but being stumped by complex queries.

Our previous discussion referred to the construction of schemata during the learning process. Once constructed, these are deployed in solving problems. This means that experts use their schemata while novices do not have these at their disposal. Table V shows the participants’ comments related to problem solving.

Learners should ideally proceed through all four cognitive stages (see Fig. 5).

1. The first step is to have an understanding of the underlying SQL concepts and how they are used (remembering and comprehension of SQL concepts.)
2. Next they should analyse: divide the problem into parts within the context of the problem. Thereafter, they
3. Only then should they start writing the query.
4. Finally, they check to see whether the query has indeed solved the problem. If not, they should ideally go back to one of the previous stages until the checking stage delivers a judgement that the problem has been solved.

We observed two groups of 15 novices and two experts solving SQL problems to observe their problem solving strategies. What we noticed was that the experts, when presented with a problem, generate a number of alternative ways of solving the problem. They then decided on an optimal approach and start to write the query. The novices, however, start writing the SQL immediately, skipping the analysis and synthesis stages. The observation process led to the SQL problem-solving model proposed in Fig. 6.

Fig. 6 SQL problem solving – The Practice Stage of SQL Learning Taxonomy

Our observation was that novices did not engage in analysis and synthesis: they moved straight on to writing the query. This kind of practice does not construct of schema.

AI Shuaily [3] analysed the influence of the current SQL teaching methods and approaches. She concluded that SQL learners needed a well-designed teaching method to expose them to common SQL problems. In this way, problem-solving skills can be nurtured and expertise developed. Novices should not deploy a tactical trial and error approach and rather move to a more strategic approach which is more likely to result in schema construction.

E. Instructional Material

The instructional materials should help learners to understand SQL concepts and guide them through the essential problem solving steps. The instructional materials should present different types of knowledge, such as:

- declarative and procedural knowledge [5]; and,
- conditional knowledge [44].

Bloom & Broder and Mayer [7], [24] suggest that problem-solving teaching methods should focus on the modelling of the “process” steps, rather than on the “product” and give students practice in comparing their strategies to those of expert models.

Unfortunately, the majority of current teaching and learning approaches do not encourage analogical problem solving. Perhaps that is why novices deploy a trial and error approach. It is possible to argue that students suffer from an inability to recognize the context of the problem and lack the ability to apply abstract knowledge because they do not have the necessary mental models to do this. Thus, students solve problems by mapping random SQL concepts and knowledge to the set problem without having any plan or justified approach. In other words, students might have progressed through the remembering and understanding stages of Bloom, but falter during the practice stage and do not really master SQL.

V. SQL LEARNING FRAMEWORK

In this paper, we present a model of SQL learning that models the dimensions of SQL mastery as shown in Fig. 7.

The framework aims to guide both educators and course designers toward effective instructional materials and consists of three main areas:

1- Cognition and mental models: Presents the development of mental model throughout the learning process.
2- SQL learning taxonomy (from Fig. 5): Illustrates the proposed learning taxonomy in, which relates to SQL knowledge and skill acquisition.
3- Cross-cutting factors that highlight the factors that influence ease of learning.

VI. CONCLUSION

SQL is a declarative computer language and is the de facto industry database language. This paper suggests a framework of SQL learning. The purpose of the proposed SQL learning framework is to articulate and highlight those factors that that impact on SQL mastery.

The study also used various research methods to identify the cross-cutting factors and processes that impact mastery of SQL. While human cognition is fixed, we would argue that the one factor we, as educators, can influence, is to align the instruction and the instructional materials as closely to the cognitive process as possible.
Fig. 7 SQL Learning Framework

REFERENCES

