The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme

Abstract—The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (appA) from E. coli was cloned and transformed into two probiotic bacteria Lactobacillus salivarius and Lactococcus lactis. L. salivarius showed plasmid instability, unable to express the gene. The expression of appA gene in L. lactis was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant L. lactis, showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of L. lactis. The growth of native and recombinant L. lactis was similar in the presence of two concentrations of ox bile.

Keywords—Lactobacillus salivarius, Lactococcus lactis, recombinant, phytase, poultry.

I. INTRODUCTION

PHOSPHORUS, as an essential mineral, is usually not bioavailable to non-ruminant animals in phytate form due to the absence of phytase enzyme in the digestive tract, which is required to separate phosphorus from the phytate molecule. Phytase enzyme increases the bioavailability of phosphorus in animal feeds by cleaving phosphate(PO$_4^-$) band from plant phytate (myo-inositol hexakis-dihydrogen phosphate) [1]. A phytase enzyme similar to phosphorus supplement has been shown to be efficacious for the improvement of bone mineralization, the growth performance and productive trait of porcine animals [2], [3]. Phytase represents about 60-90% of total phosphorus in cereal grains and oilseeds [2]. Given the existence of residual phosphorus in fecal contaminates environment and water sources, it is highly important to increase the absorption of phosphate from digestive tract of mono-stomach animals.

The commercial phytase are often obtained from fungi or bacterial sources. So far, Aspergillus niger phytase, which exhibits high activity, has been successfully expressed in Pichia pastoris [4] and Saccharomyces cerevisiae [5]. The Escherichia coli phytase gene appA was also been a suitable target for expression in Schizosaccharomyces pombe, S. cerevisiae and P. pastoris [6]. It has been demonstrated that E. coli phytase is resistant to pepsin enzyme with an optimum activity resembling the physiological pH in the stomach of chickens and pigs [1]. It provides an excellent condition for phytate digestion as the molecule of phytate is soluble in the acidic condition of stomach. Also it has been revealed that stomach digesta can efficiently inactivate the enzymes except for E. coli phytase which displayed a residual activity of 93% after 60 minute incubation at 40°C [7].

Lactic acid bacteria are a type of probiotic bacteria with poor phytase activity caused by evolutionary pressures [8]. There are a few reports about the cloning of phytase gene in a Lactic acid bacterium. In a study, the phytase gene (appA) from Aspergillus ficuum was successfully expressed in Lactobacillus casei [9]. Also, a weak expression of Bacillus subtilis phyC gene was obtained in L. plantarum [8]. To date, there has been a paucity of reports on transferring E. coli phytase gene into lacticabilli and lactococcus genus.

The present study describes the cloning and expression of E. coli phytase gene (appA) in a species of L. salivarus isolated from gastrointestinal tract of healthy broiler chickens and in Lactococcus lactis subsp. Cremoris MG1363 [10]as a probiotic species. Probiotic criteria of L. salivarus have already been examined and proved in previous in vitro studies [11]. The aim of this study is to construct a probiotic with phytate degradation potential.

II. MATERIALS AND METHODS

A. Bacterial Strains, Plasmids, and Media

The bacterial strains and plasmids used in this study are listed in Table I. L. salivarus and E. coli were grown in MRS (De Man Regosa and sharp) and Luria-Bertani (LB) broth at 37°C respectively. L. lactis was cultured in M17 broth at 30°C. Solid media were provided by adding 1.5% agar to each medium. To achieve selective media, the media were supplemented with 5μg/ml, 10μg/ml and 400μg/ml of erythromycin (Sigma-Aldrich, Missouri 63103 USA) for L. salivarius, L. lactis, and E. coli, respectively.

B. DNA and Plasmid Isolation

DNA was isolated from E. coli BL21 DE3 for amplification of appA using Chachaty and Saulnier method [12]. Plasmid DNA was extracted from E. coli MC1061 based on alkaline lysis method [13]. Restriction enzymes and T4 ligase were purchased from Fermentas Corporation (Fermentas GMBH, Germany).
SalI/PstI inserted in fragment containing five restriction sites was designed and digested pBU003 to construct pBU by the standard method [13]. Transformants were selected by the electroporation method [14]. The modified plasmid was subjected to the Bates method [15].

C. Plasmid Modification

pNZ3004 contains only two restriction sites for SalI and PstI restriction enzymes in the cloning site and one of these, SalI, is also present in the phytase gene (appA). A 58 bp fragment containing five restriction sites was designed and inserted in SalI-PstI sites. The modified plasmid was designated as pBU003.

D. Construction of Phytase Expression Plasmid

The coding sequence of appA gene (AM946981.2) from E. coli BL21 was amplified with the forward primer E1 (5’-ATCCTTTCTGAATCTGACTTGCGTACAGTGAG-3’) and the reverse primer K1 (5’-GGTTTGGCGGCGTCTTAACACTGCACGCGGGT-3’).

These primers were designed to add an XhoI site (underlined) to the 5' end and a NorI site (underlined) to the 3' end of the PCR product. The PCR fragments encoding phytase digested by XhoI and NorI enzymes were inserted into an XhoI-NorI digested pBU003 to construct pBUappA (Fig. 1).

E. Transformation of Plasmid DNA

Competent E. coli MC1061 were prepared and transformed by the standard method [13]. Transformants were selected from a LB agar plate containing erythromycin. Plasmid was extracted from the transformed E. coli and subjected to the sequencing analysis using the plasmid forward primer, pznf (5’- TAGAGGAGTCCAAAATGCC-3’) and the plasmid reverse primer, pnzr (5’-TGATTTACTGTATTCCAGGAGG-3’). After the blast analysis and confirmation of the cloned fragment identity, plasmid was electroporated to L. lactis and L. salivarius as described earlier [14]. The electroporated L. salivarius and L. lactis were cultured in MRS and M17 broth respectively for 3h. Then, they were spread on a solid medium containing erythromycin and incubated at the ambient temperatures until the transformants appeared. This process usually takes 24 to 48h.

F. Detection of Expression by Reverse Transcription PCR (RT-PCR)

Transformants were confirmed by the direct colony PCR using primers pznf/pnzr and RT-PCR to detect specific appA RNA. The total RNA was extracted from pBu22 transformants using ParToos (Mashad, Iran) RNA extraction kit. cDNA was synthesized (RevertAid™ First Strand cDNA Synthesis Kit, Fermentas) with DNase-treated RNA and subjected to PCR using E1/K1 primers. The PCR product was analyzed by electrophoresis on 1% agarose gel.

G. Determination of Plasmid Stability

The stability of plasmid in recombinant cells was investigated by the Bates method [15]. Briefly, the transformed bacteria were grown in MRS or M17 broth medium without any antibiotic and maintained at the mid-log phase throughout 30 generations by refreshing bacteria. At the appropriate generation, bacteria were diluted serially and plated onto the medium with or without erythromycin to determine the rate of plasmid loss.

H. Purification of Recombinant Protein

Transformed bacteria were grown to the middle exponential phase (OD600= 0.4 for L. lactis) and induced with lactose (2%) for 3h prior to the harvest. Cells were washed with Tris-HCl 50mM (pH=7) and disrupted by sonication for 10 min (3s pulse and 1s rest). Then, all operations were carried out at 4°C. The cell debris was removed by centrifugation and the cell extract was mixed with saturated ammonium sulfate to precipitate the protein.
obtain a final concentration of 25%. The mixture was incubated under agitation for 45 min and then centrifuged at 9000g for 25 min. The supernatant was mixed with a volume of saturated ammonium sulfate to reach 75% saturation and incubated under agitation for 12 h. The mixture was centrifuged at 9000g for 25 min. The pellet was then dissolved in 5 ml 25 mM Tris–HCl with pH 7 and dialyzed overnight against the same buffer. The dialyzed sample was loaded onto a DEAE-Sepharose column equilibrated with 25 mM Tris–HCl, pH 7. After washing the column with 25 ml of the same buffer, the bound proteins were eluted with 25 mM Tris–HCl, pH 7 containing 1 M NaCl. The fractions with a 46 kDa band corresponding to the phytase on the polyacrylamide gel were pooled and dialyzed against 25 mM Tris–HCl, pH 7.5 overnight for further analysis.

I. Phytate Zymography Analysis of Recombinant Bacteria

SDS-PAGE (10%) was performed as described by [16]. The sample buffer did not contain any 2-mercaptoethanol to carry out non-denaturing electrophoresis. Protein samples were loaded in duplicate, symmetrically from both edges of the gel. One part of the gel was stained with silver nitrate (AgNO₃) and the other subjected to zymography analysis [17]. A phytase plate assay was also carried out to evaluate phytase expression in the transformed bacteria. The recombinant bacteria were grown on a solid medium containing 1% sodium phytate at the proper time and temperature. After two days of growth, the colonies were washed off the agar surface and the Petri plates were flooded with a 2% aqueous cobalt chloride solution. After 5-min incubation at the room temperature, the cobalt chloride solution was replaced with a freshly prepared solution containing equal volume of a 6.25% (w/v) aqueous ammonium molybdate solution and 0.42% (w/v) ammonium vanadate solution. Following the 5-min incubation, ammonium molybdate–ammonium vanadate solution was removed and the plate was examined for cleared zones in which the colonies had been grown.

TABLE II

<table>
<thead>
<tr>
<th>Enzyme activity (U/ml)</th>
<th>Recombinant phytase</th>
<th>Commercial phytase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.9±0.16</td>
<td>220±1.2</td>
</tr>
</tbody>
</table>

J. Phytase Activity

Phytase activity was measured in the cell extraction using a colorimetric method based on the determination of the released inorganic phosphorus, as described by [18]. One phytase unit was defined as the amount of enzyme that released 1 µmol of inorganic phosphorus from 25 mg sodium phytate within 1 min [19].

K. Determination of Acid Tolerance

The tolerance of recombinant and native *L. lactis* to acidity was evaluated at critical pHs, 2.5 and 3. The incubation lasted for 4 hours. The bacterial cells were prepared and diluted and the results were expressed as the mean of log₁₀ of colony forming unit (cfu).

L. Determination of Bile Salt Tolerance

To determine bile salt tolerance, recombinant and native *L. lactis* were grown in the presence of different dilutions of taurocholic acid (Fluka, sigma-Aldrich GmbH, Buchs; cat 86339) and ox bile (Fluka, Sigma-Aldrich GmbH, Buchs; cat.70168). A volume of bacterium was cultured in M17 broth containing 2% and 0.3% ox bile. To evaluate the growth in the presence of taurocholic acid, the bacterium were cultured in M17 broth containing 0.0, 7, 14, 21 mmol l⁻¹ of sodium taurocholate. The optical densities (OD) were monitored for 12 h with 1 h interval. Experiments were performed in four different series within 96 wells plate.

III. RESULTS

A. Nucleotide Sequences of appA

The total length of the phytase insert (appA) was 1.25 kbp. A Blast search of cloned fragment showed 99% similarity to the reported *E. coli* phytase sequence in the GenBank (accession number AM946981.2).

B. Verification of Transformation and Expression of Plasmid into *L. salivarius* and *L. lactis*

The expression plasmid pBUappA were electroporated into *L. salivarius* and *L. lactis* with an efficiency similar to that of pBU003 (1.48 × 10² v 2×10² transformants per µg of DNA). The presence of *appA* gene in *L. salivarius* and *L. lactis* was verified by direct- colony PCR. In both bacteria, plasmid primers (pNZ set) amplified a 1.5 kbp fragment containing *appA* sequence. The bacteria not carrying plasmid did not display any band and those of plasmids without insert showed a 0.25 kbp band.

Specific *appA* mRNA was also detected in transformed cells that showed positive results in direct-cloning PCR. *L. lactis* displayed a 1.3 kbp band by performing PCR, with synthesized cDNA serving as the template. In contrast, *L. salivarius* showed no specific RNA for phytase gene (Fig. 2). Therefore, the plasmid instability in *L. salivarius* was suspected and analyzed.

Fig. 2 Detection of specific appA RNA by polymerase chain reaction of cDNA, lane1: 1kb molecular marker; lane2: negative control; lane3: positive control; lane4: cDNA of *L. lactis* and lane5: cDNA of *L. salivarius*
C. Plasmid Stability

The stability of the recombinant plasmid in *L. salivarus* and *L. lactis* were assessed in the absence of antibiotic. In contrast to *L. salivarus*, more than 90% of *L. lactis* colonies grown in the absence of antibiotic remained resistant to erythromycin even after 30 generations, as shown in Fig. 3. Instability of plasmid in *L. salivarus* was confirmed by the direct-colony PCR so that no plasmid could be detected in bacterial cells after five generations.

![Fig. 3 Plasmid stability in *L. salivarus* (■) and *L. lactis* (▲)](image)

D. Zymography Assay

The enzymatic activity of the recombinant *L. lactis* was confirmed by zymography assay. In zymographic analysis of acrylamid gel containing sodium phytate, the lysate of recombinant *L. lactis* revealed a 46 kDa band with phytase activity. A similar band was detected on SDS-PAGE stained using silver nitrate (Fig. 4). Also, phytase plate assay showed enzyme activity on the growth zone of *L. lactis* (Fig. 5). This suggested that the *E. coli* phytase could be functionally expressed by *L. lactis* harboring pBUappA.

E. Phytase Activity Measurement

Phytase activity was measured in cell extracts of *L. lactis* (Table II). A commercial *E. coli* phytase was also used as the standard. No activity was found in the culture supernatant fluid of *L. lactis* and *L. salivarus*. No phytase activity was detected in the cell extracts of *L. salivarus* as a result of plasmid instability. In present study, phytase activity of non-recombinant *L. lactis* was tested and any phytase activity was not observed (Fig. 5).

F. Tolerance to Acidic pH

The colony count was not different between native and recombinant *L. lactis* at pH 3 during the experiment, but the recombinant *L. lactis* was more resistant to pH 2.5 in the first two hours, as compared to the native strain (Table III).

G. Growth in Presence of Ox Bile and Taurocholate

The growth of the native and recombinant *L. lactis* was similar in the presence of two concentrations of ox bile (Fig. 6). Both native and recombinant strains showed slow growth in the presence of medium concentrations of ox bile. Taurocholate did not significantly affect the growth of bacteria in exponential or stationary phases (Fig. 7).

IV. Discussion

The use of probiotics engineered to express specific enzymes can have additional benefits for livestock production by increasing the nutrient availability and reducing the cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve the digestibility and availability of phosphorus derived from plant sources [20], [21].
The resistance of recombinant enzym from recombinant mercaptoethanol (the data are not shown). Extracted phytase can maintains the phytase activity even after adding. The recombinant phytase is a non-glucosilat protein which kDa, probably due to peptidase effect on the signal peptide. The recombinant phytase is a non-glicosilate protein which kDa, probably due to peptidase effect on the signal peptide. The recombinant bacteria exhibited slightly more absorbance than the grown bacteria in the absence of taurocholate in the stationary phase. It has been shown that the recombinant L. lactis has preserved its probiotic property the same as the native strain.

The transformation of L. salivarius was not successful due to the plasmid instability. This is a major obstacle for the utilization of a recombinant microorganism in the industry. The stability of plasmid depends on several factors including the mode of plasmid replication. A signal sequence in the recombinant plasmid of pNZ3004 could reduce structural plasmid instability in derive plasmids of pWV01 [33]. In the same line of research, [34] showed that the deletion of lacA signal sequence in the recombinant plasmid of pNZ3004 could reduce structural plasmid instability (the plasmid drive from pWV01 family).

Our findings are consistent with that the literature according which genetically modified L. lactis maintained its probiotic character and could be used as a vehicle for delivering a specific protein to the gut environment [35], [36]. In addition, recombinant lactobacilli preserved their probiotic activities after acquiring enzyme production ability [34]-[37].

V. CONCLUSION

In the present study, phytase gene originated from E. coli was cloned and expressed in L. lactis. Phytase activity, determined in cell extracts of L. lactis, was not found in culture supernatant. Further in vivo evaluations of phytase degrading activity is suggested to confirm poultry applications. Also, the application of highly resistant plasmid with theta replication mechanism is suggested to achieve a successful transformation in L. salivarius.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support of Research Administration of Mashhad University of Medical Sciences and the Excellence Centre for Animal Sciences, and Faculty of Agriculture, Ferdowsi University of Mashhad.

REFERENCES

TABLE III

<table>
<thead>
<tr>
<th>Strain</th>
<th>pH=2.5</th>
<th>pH=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. lactis</td>
<td>4.23</td>
<td>2.22</td>
</tr>
<tr>
<td>L. lactis (pBuappA)</td>
<td>1.15</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probability</th>
<th>p>0.05</th>
<th>P<0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH=2.5</td>
<td>p>0.05</td>
<td>P<0.05</td>
</tr>
<tr>
<td>pH=3</td>
<td>p>0.05</td>
<td>P<0.05</td>
</tr>
</tbody>
</table>

Fig. 6 Growth of native and recombinant L. lactis in the presence of different ox bile extracts. (▲) L. lactis, (●) L. lactis pBUappA.

Fig. 7 Growth of native and recombinant L. lactis in the presence of different ox bile extracts. (▲) L. lactis, (●) L. lactis pBUappA.

The resistances to acidity and bile and probiotic properties of L. lactis had already been proved in some studies [25], [26]. The resistance of recombinant L. lactis to acid was similar to that of native counterpart even in pH ranges lower than 2.5. Perhaps pBUappA plasmid provides bacterium with some additional ability for resistance to low pH conditions. The recombinant bacteria exhibited slightly more absorbance than the grown bacteria in the absence of taurocholate in the stationary phase. It has been shown that the recombinant L. lactis has preserved its probiotic property the same as the native strain.

The transformation of L. salivarius was not successful due to the plasmid instability. This is a major obstacle for the utilization of a recombinant microorganism in the industry. The stability of plasmid depends on several factors including the mode of plasmid replication, plasmid size, medium composition, host inheritable background, culture medium and temperature. [27]-[29]. Two types of plasmid instability, i.e. segregation and structural, were assumed. The segregation instability describes the plasmid loss caused by unequal partition of the plasmid between daughter cells (defective partitioning), and the structural instability defines a plasmid population carrying structural deletions or rearrangements. The rolling circle replication type plasmids (like pWV01 family) often show a high degree of both instabilities due to the formation of single strand DNA (ss-DNA), intermediates and the formation of linear high molecular weight plasmid multimers [30]-[32]. At the present study, given the sudden and quick reduction in recombinant cells, it seems that structural instability induces miss plasmid in L. salivarius. It has been shown that both divergent transcription and the export of plasmid-specified proteins induce structural instability in derive plasmids of pWV01 [33]. In the same line of research, [34] showed that the deletion of lacA signal sequence in the recombinant plasmid of pNZ3004 could reduce structural plasmid instability (the plasmid drive from pWV01 family).

Our findings are consistent with that the literature according which genetically modified L. lactis maintained its probiotic character and could be used as a vehicle for delivering a specific protein to the gut environment [35], [36]. In addition, recombinant lactobacilli preserved their probiotic activities after acquiring enzyme production ability [34]-[37].

Fig. 7 Growth of native and recombinant L. lactis in the presence of different ox bile extracts. (▲) L. lactis, (●) L. lactis pBUappA (●) in the absence of taurocholate.

