Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications

Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong

Abstract—This research is aimed to study a two-step iteration process defined over a finite family of \(\sigma \)-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for \(\sigma \)-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of infinitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.

Keywords—\(\sigma \)-asymptotically quasi-nonexpansive nonself-mapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space.

I. INTRODUCTION

The theory of fixed point is extensively studied under the nonexpansivity condition of the maps. Among the classes of generalized nonexpansive mappings, Goebel and Kirk [1] introduced the class of asymptotically nonexpansive self-mappings. Let us recall the definition in the following.

Let \(C \) be a nonempty subset of a real normed linear space \(E \). A mapping \(T : C \to C \) is said to be asymptotically nonexpansive if there exists a sequence \(\{k_n\} \subset [1, \infty) \) with \(\lim_{n \to \infty} k_n = 1 \) such that

\[
\|T^n x - T^n y\| \leq k_n \|x - y\|
\]

for all \(x, y \in C \) and \(n \geq 1 \) and they proved that, if \(C \) is a nonempty closed convex subset of a real uniformly convex Banach space \(E \) and \(T \) is an asymptotically nonexpansive self-mapping of \(C \), then \(T \) has a fixed point. For more details, see, [2]–[8], [15] and references therein.

Recently, Pathak et al. [11] introduced the concept of \(\sigma \)-asymptotically quasi-nonexpansive mappings in Hilbert spaces and they proved some common minimum-norm fixed point theorems for \(\sigma \)-asymptotically quasi-nonexpansive mappings with some applications.

Let \(E \) be a real normed linear space and \(C \) be a nonempty subset of \(E \). A mapping \(T : C \to C \) is said to be \(\sigma \)-asymptotically quasi-nonexpansive if \(F(T) \neq \emptyset \) and there exist two sequences of real numbers \(\{k_n\}, \{\epsilon_n\} \) with

\[
\lim_{n \to \infty} k_n = 0 \text{ and } \sum_{n=1}^{\infty} \epsilon_n < \infty \text{ such that }
\]

\[
\|T^n x - \hat{x}\| \leq (1 + k_n)\|x - \hat{x}\| + \epsilon_n
\]

for all \(x \in C \), \(\hat{x} \in F(T) \) and \(n \geq 1 \). On the other hand, in 2006, Censor and Elfving [12] introduced the concept of a split feasibility problem in finite dimensional Hilbert space for modelling inverse problems which arise in medical image reconstruction, image restoration and radiation therapy treatment planing (see, for example, [10], [12], [13]).

Let \(B \) and \(C \) be nonempty closed convex subset of real Hilbert spaces \(H_1 \) and \(H_2 \), respectively. The split feasibility problem is formulated as follows: Find a point \(\hat{x} \) such that

\[
\hat{x} \in B \quad \text{and} \quad A\hat{x} \in C,
\]

where \(A \) is a bounded linear operator from \(H_1 \) to \(H_2 \).

Clearly, \(\hat{x} \) is a solution to the split feasibility problem if and only if \(\hat{x} \in B \) and \(A\hat{x} = P_C A\hat{x} = 0 \), where \(P_C \) is the metric projection from \(H_2 \) onto \(C \). Set

\[
\min_{x \in B} \varphi(x) := \min_{x \in B} \frac{1}{2} \|Ax - P_C Ax\|^2.
\]

Then \(\hat{x} \) is a solution of the split feasibility problem (1) if and only if \(\hat{x} \) solves the optimization problem (2) whics is called the minimum-norm problem with the minimum equal to zero.

Let \(C \) be nonempty closed convex subset of real Hilbert space \(H \) with the inner product \(\langle \cdot, \cdot \rangle \) and the induced norm...
\(\| \cdot \| \) and \(T : C \to C \) be a self-mapping. Recall that the metric projection \(P_C(x) \) of \(x \) onto \(C \) is defined as:

\[
P_C(x) = \min_{y \in C} \| x - y \|.
\]

Some authors have studied the iterative approximations of the minimum-norm fixed points of some nonlinear mappings, for example, a nonexpansive self-mapping \(T : C \to C \) and others. Especially, Yang et al. [14] introduced an explicit scheme given by

\[
x_{n+1} = \beta_n Tx_n + (1 - \beta_n) P_C[(1 - \alpha_n)x_n]
\]

for each \(n \geq 1 \). They proved that, under certain conditions on \(\{\alpha_n\} \) and \(\{\beta_n\} \), the sequence \(\{x_n\} \) converges strongly to a minimum-norm fixed point of \(T \) in real Hilbert spaces.

Let \(E \) be a real Banach space and \(C \) be a nonempty closed convex subset of \(E \). Recently, Alber [9] introduced a generalized projection mapping \(\Pi_C \) in \(E \) that assigns to an arbitrary point \(x \in E \) the minimum point of the functional \(\phi(x, y) \), where \(\phi(x, y) \) is defined by

\[
\phi(x, y) = \| x \|^2 - 2\langle x, Jx \rangle + \| y \|^2
\]

for all \(x, y \in E \), that is, for \(x \in E \), \(\Pi_Cx \) is the solution to the minimization problem

\[
\phi(\Pi_Cx, x) = \inf_{y \in E} \phi(y, x).
\]

Note that, in a Hilbert space \(H \), \(\Pi_C = P_C \) and, from the definition of function \(\phi \), it follows that

\[
(\| x \| - \| y \|)^2 \leq \phi(x, y) \leq (\| x \| + \| y \|)^2
\]

for all \(x, y \in E \);

\[
\phi(x, z) = \phi(x, y) + \phi(y, z) + 2\langle x - y, Jy - Jz \rangle
\]

for all \(x, y \in E \);

\[
\phi(x, y) = \langle x, Jx - Jy \rangle + \langle y - x, Jy \rangle \leq \| x \| \| Jx - Jy \| + \| y - x \| \| y \|
\]

for all \(x, y \in E \);

\[
\phi(x, J^{-1}(\lambda Jy + (1 - \lambda)Jz)) \leq \lambda \phi(x, y) + (1 - \lambda) \phi(x, z)
\]

for all \(x, y, z \in E \) and \(\lambda \in (0, 1) \).

It is known that, if \(E \) is a reflexive, strictly convex and smooth Banach space, then, for all \(x, y \in E \), \(\phi(x, y) = 0 \) if and only if \(x = y \). In a Hilbert space \(H \), \(\phi(x, y) = \| x - y \| \) for all \(x, y \in H \) and \(\Pi_C \) is reduced to the metric projection \(P_C \).

A mapping \(T : C \to C \) is said to be closed if, for any sequence \(\{x_n\} \subset C \) with \(x_n \to x \) and \(Tx_n \to y \), then \(Tx = y \).

Let \(E \) be a real Banach space and \(C \) be a nonempty closed convex subset of \(E \). A mapping \(T : C \to C \) is said to be \(\alpha \)-asymptotically quasi-nonexpansive nonself-mapping if there exist two sequences \(\{k_n\}, \{c_n\} \) with \(\lim_{n \to \infty} k_n = 0 \) and \(\sum_{n=1}^{\infty} c_n < \infty \) such that

\[
\phi(T(\Pi_C T)^{n-1}x, \hat{x}) \leq (1 + k_n) \phi(x, \hat{x}) + c_n
\]

for all \(x \in C \), \(\hat{x} \in F(T) \) and \(n \geq 1 \).

Let \(E \) be a real Banach space, \(C \) be a nonempty closed convex subset of \(E \) and \(T : C \to E \) be a \(\alpha \)-asymptotically quasi-nonexpansive nonself-mapping with respect to \(\{k_n\} \) and \(\{c_n\} \). We define the iterative scheme \(\{x_n\} \) as follows: for any \(x_1 \in C \),

\[
\begin{cases}
x_1 \in C, \\
y_n = \Pi_C[(1 - \alpha_n)x_n], \\
x_{n+1} = J^{-1}(\beta_n, 0)Jx_n + \sum_{i=1}^{N} \beta_{n,i}JT_i(\Pi_C T_i)^{n-1}y_n
\end{cases}
\]

for all \(n \geq 1 \), where \(\Pi_C \) is the generalized projection from \(E \) onto \(C \in E \), \(\{\alpha_n\} \subset (0, 1) \), \(\{\beta_{n,i}\} \subset [0, b] \subset (0, 1) \) and \(\sum_{i=0}^{N} \beta_{n,i} = 1 \).

We denote the set of fixed points of \(T \) by \(F(T) := \{x \in C : Tx = x\} \).

In this paper, we use the iterative scheme (10) to study and prove some strong convergence theorems in framework real uniformly convex and uniformly smooth Banach space and give one application of the main results in this paper.

II. SOME LEMMAS

Lemma 1. [9] Let \(E \) be a reflexive, smooth and strictly convex Banach space \(C \) be a nonempty closed and convex subset of \(E \). Then the following conclusions hold:

1. \(\phi(x, \Pi_C y) + \phi(\Pi_C y, y) \leq \phi(x, y) \) for all \(x \in C \) and \(y \in E \);
2. If \(x \in E \) and \(z \in C \), then \(z = \Pi_C x \) if and only if \(\langle z - y, Jz - Jy \rangle \geq 0 \) for all \(y \in C \);
3. For all \(x, y \in E \), \(\phi(x, y) = 0 \) if and only if \(x = y \).

Lemma 2. [19] Let \(E \) be a uniformly convex Banach space, \(r > 0 \) be a positive number and \(B_r(0) \) be a closed ball of \(E \). There exists a continuous, strictly increasing and convex function \(g : [0, \infty) \to [0, \infty) \) with \(g(0) = 0 \) such that

\[
\left\| \sum_{i=1}^{N} (\alpha_i x_i) \right\|^2 \leq \sum_{i=1}^{N} (\alpha_i \| x_i \|^2) - \sum_{i=1}^{N} \alpha_i \alpha_j g(x_i - x_j)
\]

for all \(x_1, x_2, x_3, \ldots, x_N \in B_r(0) = \{x \in E : \| x \| \leq r\} \) and \(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_N \in (0, 1) \) such that \(\sum_{i=1}^{N} \alpha_i = 1 \).

The function \(V : E \times E^* \to \mathbb{R} \) is defined by

\[
V(x, x^*) = \| x \|^2 - 2\langle x, x^* \rangle + \| x^* \|^2
\]

for all \(x \in E \) and \(x^* \in E^* \), which was studied by Alber [9], that is, \(V(x, x^*) \) is \(\phi(x, J^{-1}x^*) \) for all \(x \in E \) and \(x^* \in E^* \).

Lemma 3. [9] Let \(E \) be a reflexive, strictly convex and smooth Banach space with \(E^* \) as its dual. Then

\[
V(x, x^*) + 2J^{-1} x^* - x, y^* \rangle \leq V(x, x^* + y^*)
\]

for all \(x \in E \) and \(x^*, y^* \in E^* \).

Lemma 4. [16] Let \(E \) be a uniformly convex and smooth Banach space and \(\{x_n\}, \{y_n\} \) be two sequences of \(E \). If
Lemma 5. [17] Let \(\{a_n\} \) be a sequence of nonnegative real numbers satisfying the following inequality:
\[
a_{n+1} \leq (1 - \alpha)a_n + \alpha \delta_n
\]
for each \(n \geq n_0 \), where \(\{\alpha_n\} \subset (0, 1) \) and \(\delta \subset \mathbb{R} \) satisfy the following conditions: \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\lim \sup \delta_n \leq 0 \). Then \(\lim a_n = 0 \).

Lemma 6. [18] Let \(\{a_n\} \) be a sequence of real numbers such that there exists a subsequence \(\{n_i\} \) of \(\{n\} \) such that \(a_{n_i} \leq a_{n+1} \) for all \(i \in N \). Then there exists a nondecreasing sequence \(\{m_k\} \subset N \) such that \(m_k \to \infty \) and the following properties are satisfied by all numbers for all \(k \in N \):
\[
a_{m_k} \leq a_{m_k+1} \quad \text{and} \quad a_k \leq a_{m_k+1}.
\]
In fact, \(m_k = \max \{j \leq k : a_j < a_{j+1}\} \).

III. Strong Convergence Theorems

Now, we give our main results in this paper,

Theorem 1. Let \(E \) be a real uniformly smooth, strictly convex and reflexive Banach space and \(C \) be a nonempty closed convex subset of \(E \). Let \(T : C \to E \) be a closed and \(\sigma \)-asymptotically quasi-nonexpansive nonself-mappings with two sequences \(\{k_n\} \) and \(\{c_n\} \) of nonnegative real numbers with \(\lim k_n = 0 \) and \(\sum_{n=1}^{\infty} c_n < \infty \). Then \(F(T) \) is a closed and convex subset of \(C \).

Theorem 2. Let \(E \) be a real uniformly convex and uniformly smooth Banach space, \(C \) be a nonempty closed convex subset of \(E \) and \(T_i : E \to C \) be a finite family of asymptotically nonexpansive nonself-mappings with a sequence \(\{k_{n,i}\} \) of nonnegative real numbers with \(\lim_{n \to \infty} k_{n,i} = 0 \) for each \(1 \leq i \leq N \). Suppose that \(\mathcal{F} := \bigcap_{i=1}^{N} F(T_i) \) is nonempty. Let \(\{\alpha_n\} \) and \(\{\beta_{n,i}\} \) are the sequences in \((0, 1)\) satisfying the following conditions:

(i) \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \);

(ii) \(\sum_{i=1}^{N} \beta_{n,i} = 1 \) for all \(n \geq 1 \) and \(\lim\inf_{n \to \infty} \beta_{n,0} \beta_{n,i} > 0 \) for each \(1 \leq i \leq N \).

Then the sequence \(\{x_n\} \) defined by (10) converges strongly to a common minimum-norm point of \(\mathcal{F} \).

Corollary 1. Let \(E \) be a real uniformly convex and uniformly smooth Banach space, \(C \) be a nonempty closed convex subset of \(E \) and \(T : C \to E \) be a closed and \(\sigma \)-asymptotically quasi-nonexpansive nonself-mapping with two sequences \(\{k_n\} \) and \(\{c_n\} \) of nonnegative real numbers with \(\lim_{n \to \infty} k_n = 0 \) and \(\sum_{n=1}^{\infty} c_n < \infty \). Suppose that \(F(T) \) is nonempty. Let \(\{x_n\} \) be a sequence in \(C \) generated by
\[
\begin{align*}
x_1 & \in C, \\
y_n & = \Pi C[(1 - \alpha_n)x_n], \\
x_{n+1} & = J^{-1}(\beta_n Jx_n + (1 - \beta_n)(\Pi C T)^{n-1}x_n).
\end{align*}
\]
for all \(n \geq 1 \), where two sequences \(\{\alpha_n\} \) and \(\{\beta_n\} \) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset (0, 1) \), \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \);

(ii) \(\{\beta_n\} \subset [a, b] \subset (0, 1) \) and \(\lim\inf_{n \to \infty} \beta_n > 0 \) for each \(n \geq 1 \).

Then the sequence \(\{x_n\} \) converges strongly to a common minimum-norm point of \(\mathcal{F} \).

Corollary 2. Let \(E \) be a real uniformly convex and uniformly smooth Banach space, \(C \) be a nonempty closed convex subset of \(E \) and \(T_i : E \to C \) be a finite family of asymptotically nonexpansive nonself-mappings with a sequence \(\{k_{n,i}\} \) of nonnegative real numbers with \(\lim_{n \to \infty} k_{n,i} = 0 \) for each \(1 \leq i \leq N \). Suppose that \(\mathcal{F} := \bigcap_{i=1}^{N} F(T_i) \) is nonempty. Let \(\{x_n\} \) be a sequence in \(C \) generated by
\[
\begin{align*}
x_1 & \in C, \\
y_n & = \Pi C[(1 - \alpha_n)x_n], \\
x_{n+1} & = J^{-1}(\beta_{n,0} Jx_n + \sum_{i=1}^{N} \beta_{n,i} J T_i(\Pi C T)^{n-1}x_n).
\end{align*}
\]
for all \(n \geq 1 \), where two sequences \(\{\alpha_n\} \) and \(\{\beta_{n,i}\} \) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset (0, 1) \), \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \);

(ii) \(\sum_{i=1}^{N} \beta_{n,i} = 1 \) for all \(n \geq 1 \) and \(\lim\inf_{n \to \infty} \beta_{n,0} \beta_{n,i} > 0 \) for each \(1 \leq i \leq N \).
Then, the sequence \(\{x_n\} \) converges strongly to a common minimum-norm point of \(\mathcal{F} \).

Corollary 4. Let \(E \) be a real uniformly convex and uniformly smooth Banach space, \(C \) be a nonempty closed convex subset of \(E \) and \(T : C \rightarrow E \) be an asymptotically nonexpansive nonself-mapping with a sequence \(\{k_n\} \) of nonnegative real numbers with \(\lim_{n \to \infty} k_n = 0 \). Suppose that \(F(T) \) is nonempty. Let \(\{x_n\} \) be a sequence in \(C \) generated by

\[
\begin{align*}
x_1 & \in C, \\
y_n & = \Pi_C[(1 - \alpha_n)x_n], \\
x_{n+1} & = J^{-1}\left((\beta_n)x_n + (1 - \beta_n)(JT(\Pi_C)^{n-1}y_n)\right)
\end{align*}
\]

for all \(n \geq 1 \), which \(\{\alpha_n\} \) and \(\{\beta_n\} \) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset (0, 1) \), \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \);

(ii) \(\{\beta_n\} \subset [a, b] \subset (0, 1) \) and \(\liminf_{n \to \infty} \beta_n > 0 \)

for each \(n \geq 1 \).

Then the sequence \(\{x_n\} \) converges strongly to a common minimum-norm point of \(\mathcal{F} \).

Corollary 5. Let \(E \) be a real uniformly convex and uniformly smooth Banach space, \(C \) be a nonempty closed convex subset of \(E \) and \(T : C \rightarrow E \) be a nonexpansive nonself-mapping with a real sequence \(\{k_n\} \) with \(\lim_{n \to \infty} k_n = 0 \). Suppose that \(F(T) \) is nonempty. Let \(\{x_n\} \) be a sequence in \(C \) generated by

\[
\begin{align*}
x_1 & \in C, \\
y_n & = \Pi_C[(1 - \alpha_n)x_n], \\
x_{n+1} & = J^{-1}\left((\beta_n)x_n + (1 - \beta_n)(JT(\Pi_C)^{n-1}y_n)\right)
\end{align*}
\]

for all \(n \geq 1 \), which two sequences \(\{\alpha_n\} \) and \(\{\beta_n\} \) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset (0, 1) \), \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \);

(ii) \(\{\beta_n\} \subset [a, b] \subset (0, 1) \) and \(\liminf_{n \to \infty} \beta_n > 0 \)

for each \(n \geq 1 \).

Then the sequence \(\{x_n\} \) converges strongly to a common minimum-norm point of \(\mathcal{F} \).

IV. Applications

In this section, we apply our main result to the minimum-norm in Banach spaces.

Corollary 7. Let \(E \) be a real uniformly convex and uniformly smooth Banach space. Let \(A_i : C \rightarrow \mathbb{R} \) be a continuously Fréchet differentiable convex function with \(T_i := \Pi_C(I - \mu \nabla A_i) \) be nonexpansive nonself-mapping for some \(\mu > 0 \) and for each \(1 \leq i \leq N \). Let \(\{x_n\} \) be a sequence in \(C \) generated by

\[
\begin{align*}
x_1 & \in C, \\
y_n & = \Pi_C[(1 - \alpha_n)x_n], \\
x_{n+1} & = J^{-1}\left((\beta_n)x_n + (1 - \beta_n)(JT(\Pi_C)^{n-1}y_n)\right)
\end{align*}
\]

for all \(n \geq 1 \), where two sequences \(\{\alpha_n\} \) and \(\{\beta_n\} \) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset (0, 1) \), \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \);

(ii) \(\{\beta_n\} \subset [a, b] \subset (0, 1) \) and \(\liminf_{n \to \infty} \beta_n > 0 \)

for each \(n \geq 1 \) and \(1 \leq i \leq N \).

Then the sequence \(\{x_n\} \) converges strongly to a common minimum-norm point of \(\mathcal{F} \).

V. Numerical Example

Now, we give an example of a \(\sigma \)-asymptotically quasi-nonexpansive mapping that satisfies the conditions of Theorem 2 and some numerical experiment results to explain the conclusion of the theorem as follows:

Let \(E = H = C = [0, \infty) \), \(J \) be the identity mapping and \(\Pi_C = P_{C} \) with \(P_C : x = x \). Assume that \(T_i : x = \frac{x}{i} \), \(1 \leq i \leq N \), for \(x \in C \). Let \(k_n = \frac{1}{\sigma^2(n+1)} \) and \(c_n = \frac{1}{\sigma^2} \) for \(n \geq 1 \) and \(1 \leq i \leq N \), we have

\[
\begin{align*}
||T_ix - T_iy|| = (1 - k_{i,n})||x - y|| & - c_{i,n} \\
\leq ||x - y|| & - (1 - k_{i,n})||x - y|| - c_{i,n}
\end{align*}
\]

\(\leq 0 \)
for $n \geq 1$ and $1 \leq i \leq N$ with $\lim_{n \to \infty} k_{n,i} = 0$ and $\sum_{i=1}^{\infty} c_{n,i} < \infty$, so T_i is a σ-asymptotically quasi-nonexpansive mapping. Clearly, $\mathcal{F} = \bigcap_{i=1}^{N} F(T_i) = \{0\}$. Set

$$\alpha_n = \frac{1}{n+2} \quad \text{and} \quad \beta_{n,i} = \frac{1}{3(n+3)}.$$

Thus, the conditions of Theorem 2 are fulfilled. Therefore, we can invoke Theorem 2 to demonstrate that the iterative sequence $\{x_n\}$ defined by (10) converges strongly to 0. We have the numerical analysis tabulated in Table I and shown in Fig. 1.

<table>
<thead>
<tr>
<th>Table I: Numerical Experiment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>x_n</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2.5617</td>
</tr>
<tr>
<td>3</td>
<td>0.6419</td>
</tr>
<tr>
<td>4</td>
<td>0.1605</td>
</tr>
<tr>
<td>5</td>
<td>0.0401</td>
</tr>
<tr>
<td>6</td>
<td>0.0100</td>
</tr>
<tr>
<td>7</td>
<td>0.0025</td>
</tr>
<tr>
<td>8</td>
<td>0.0006</td>
</tr>
<tr>
<td>9</td>
<td>0.0002</td>
</tr>
<tr>
<td>10</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Fig. 1 The iteration chart with initial value $x_1 = 10$

VI. CONCLUSION

Our iteration can be used for proving strong convergence theorems of the proposed sequence $\{x_n\}$ in real uniformly convex and uniformly smooth Banach spaces.

APPENDIX A

PROOF OF THE THEOREM 1

Let $\{x_n\}$ be a sequence in $F(T)$ with $x_n \to v$ as $n \to \infty$. Since $T x_n = x_n \to v$, by the closedness of T, we have $v = T v$, that is, $v \in F(T)$. This shows that $F(T)$ is closed.

Next, we prove that $F(T)$ is convex. For any $x, y \in F(T)$ and $t \in (0,1)$, putting $u = tx + (1 - t)y$. We prove that $u \in F(T)$. Let $\{v_n\}$ be a sequence generated by

$\begin{align*}
v_1 &= Tu, \\
v_2 &= T T T C v_1 = T T T \Pi C T u, \\
v_3 &= T T T C T v_2 = T T T \Pi C T T T C T u, \\
\vdots
\end{align*}$

for each $n \geq 1$. By the definition of $\phi(x,y)$, we have

$$\phi(u,v_n) = \|u\|^2 - 2\langle u, Jv_n \rangle + \|v_n\|^2$$

$$= \|u\|^2 - 2\langle t x + (1 - t)y, J v_n \rangle + \|v_n\|^2$$

$$= \|u\|^2 - 2t \langle x, Jv_n \rangle - 2(1 - t) \langle y, J v_n \rangle + \|v_n\|^2$$

$$= \|u\|^2 + \phi(x,v_n) + (1 - t)\phi(y,v_n) - t\|x\|^2$$

$$- (1 - t)\|y\|^2.$$

(18)

Also, we have

$$t \phi(x,v_n) + (1 - t)\phi(y,v_n)$$

$$\leq t[(1 + k_n)\phi(x,u) + c_n] + (1 - t)[(1 + k_n)\phi(y,u) + c_n]$$

$$= t[(1 + k_n)\|x\|^2 - 2\langle x, J u \rangle + \|u\|^2] + c_n$$

$$+ (1 - t)[(1 + k_n)\|y\|^2 - 2\langle y, J u \rangle + \|u\|^2] + c_n$$

$$= t(1 + k_n)\|x\|^2 + (1 - t)(1 + k_n)\|y\|^2$$

$$- (1 + k_n)\|u\|^2 + c_n$$

$$= (1 + k_n)\|x\|^2 + (1 - t)\|y\|^2 - \|u\|^2 + c_n.$$

(19)

From (18) and (19), it follows that

$$\phi(u,v_n) \leq \|u\|^2 + (1 + k_n)\|x\|^2 + (1 - t)\|y\|^2 - \|u\|^2$$

$$+ c_n - t\|x\|^2 - (1 - t)\|y\|^2

\to 0$$

as $n \to \infty$. Thus $v_n \to u$ as $n \to \infty$, which implies that $v_{n+1} \to u$. Since T is closed and $v_{n+1} = T \Pi C T \Pi C T \Pi C T \cdots$ $\Pi C u$, we have $u = T \Pi C u$. Since $\Pi C u = u$ for any $u \in \Pi C$, we have $u = T u$ and so $F(T)$ is convex. This completes the proof.

APPENDIX B

PROOF OF THE THEOREM 2

Let $\hat{x} = \Pi \mathcal{F}(0) \in \mathcal{F}$, that is, $\|\hat{x}\|^2 = \phi(\hat{x}, 0) = \min_{y \in \mathcal{F}} \|y\|^2$ and let $k_n = \max_{1 \leq i \leq N} \{k_{n,i}\}$ and $c_n = \max_{1 \leq i \leq N} \{c_{n,i}\}$. It follows from (10), Lemma 1 and the property of ϕ that

$$\phi(\hat{x}, y_n) = \phi(\hat{x}, \Pi C(1 - \alpha_n)x_n)$$

$$\leq \phi(\hat{x}, (1 - \alpha_n)x_n)$$

$$= \phi(\hat{x}, J^{-1}(\alpha_n J 0 + (1 - \alpha_n)J x_n))$$

$$= \|\hat{x}\|^2 - 2\langle \hat{x}, \alpha_n J 0 + (1 - \alpha_n)J x_n \rangle$$

$$+ \|\alpha_n J 0 + (1 - \alpha_n)J x_n\|^2$$

$$\leq \|\hat{x}\|^2 - 2\langle \hat{x}, \alpha_n J 0 + (1 - \alpha_n)J x_n \rangle$$

$$+ \alpha_n J 0 + \|\alpha_n\| J x_n\|^2$$

$$= \alpha_n \phi(\hat{x}, 0) + (1 - \alpha_n)\phi(\hat{x}, x_n).$$

(20)
Then, we have
\[
\phi(\hat{x}, x_{n+1})
\]
\[
= \phi(\hat{x}, J^{-1}(\beta_{n,0}Jx_n + \sum_{i=1}^{N} \beta_{n,i}JT_i(\Pi C T_i)^{n-1}y_n))
\]
\[
= \|\hat{x}\|^2 - 2(\hat{x}, \beta_{n,0}Jy_n + \sum_{i=1}^{N} \beta_{n,i}JT_i(\Pi C T_i)^{n-1}y_n)
\]
\[
+ \|\beta_{n,0}Jy_n + \sum_{i=1}^{N} \beta_{n,i}JT_i(\Pi C T_i)^{n-1}y_n\|^2
\]
\[
\leq \|\hat{x}\|^2 - 2\beta_{n,0}(\hat{x}, Jy_n) - 2\sum_{i=1}^{N} \beta_{n,i}(\hat{x}, JT_i(\Pi C T_i)^{n-1}y_n)
\]
\[
+ \beta_{n,0}\|Jy_n\|^2 + \sum_{i=1}^{N} \beta_{n,i}\|JT_i(\Pi C T_i)^{n-1}y_n\|^2
\]
\[
- \beta_{n,0}\|\beta_{n,0}\|Jy_n - JT_i(\Pi C T_i)^{n-1}y_n\|\]
\[
\leq \beta_{n,0}\|\hat{x}, x_n\| + \sum_{i=1}^{N} \beta_{n,i}\|\hat{x}, JT_i(\Pi C T_i)^{n-1}y_n\|
\]
\[
\leq \beta_{n,0}\|\hat{x}, x_n\| + (1 - \beta_{n,0})\|\hat{x}, Jx_n\| + (1 - \beta_{n,0})\|\hat{x}, x_n\|
\]
\[
+ (1 - \beta_{n,0})\|\hat{x}, x_n\| + (1 - \beta_{n,0})(1 + k_n)\|\hat{x}, x_n\|
\]
\[
+ (1 - \beta_{n,0})(1 + k_n)(1 - \alpha_n)\|\hat{x}, x_n\| + (1 - \beta_{n,0})c_n
\]
\[
= \|\hat{x}, x_n\| + (1 - \beta_{n,0})(1 + k_n)(1 - \alpha_n)\|\hat{x}, x_n\| + (1 - \beta_{n,0})c_n
\]
\[
= \|\hat{x}, x_n\| + (1 - \beta_{n,0})(1 + k_n)(1 - \alpha_n)\|\hat{x}, x_n\|
\]
\[
+ (1 - \beta_{n,0})(1 + k_n)\|\hat{x}, x_n\| + (1 - \beta_{n,0})c_n
\]
\[
\leq \prod_{i=1}^{n} \beta_{i,0}\|\hat{x}, x_n\| + (1 - \beta_{n,0})\|\hat{x}, x_n\| + \sum_{j=1}^{n} c_j
\]
\[
= \Theta_1\|\hat{x}, x_n\| + (1 - \Theta_1)\|\hat{x}, x_n\| + \sum_{j=1}^{n} c_j,
\]
\[
(21)
\]
where \(\Theta_1 = \prod_{i=1}^{n} \beta_{i,0}\), \(\Theta_{n-1} = \beta_{n-1,0}\beta_{n-2,0}\beta_{n-3,0} \cdots \beta_{1,0}\)
and \(\sum_{j=1}^{n} c_j = c_1 + c_2 + c_3 + \cdots + c_n\). From (8) and Lemma 3, it follows that
\[
\phi(\hat{x}, y_n)
\]
\[
\leq \phi(\hat{x}, (1 - \alpha_n)x_n)
\]
\[
= V(\hat{x}, J(1 - \alpha_n)x_n)
\]
\[
\leq (1 - \alpha_n)x_n + \alpha_n J\hat{x}
\]
\[
- 2(J^{-1}(1 - \alpha_n)x_n - \hat{x}, \alpha_n J\hat{x})
\]
\[
= \phi(\hat{x}, J^{-1}(1 - \alpha_n)x_n + \alpha_n J\hat{x})
\]
\[
- 2((1 - \alpha_n)x_n - \hat{x}, \alpha_n J\hat{x})
\]
\[
\leq (1 - \alpha_n)\phi(\hat{x}, x_n) + \alpha_n \phi(\hat{x}, \hat{x})
\]
\[
- 2\alpha_n ((1 - \alpha_n)x_n - \hat{x}, J\hat{x})
\]
\[
= (1 - \alpha_n)\phi(\hat{x}, x_n) - 2\alpha_n ((1 - \alpha_n)x_n - \hat{x}, J\hat{x}).
\]
\[
(22)
\]
From (21) and (22), we have
\[
\phi(\hat{x}, x_{n+1})
\]
\[
\leq \beta_{n,0}\phi(\hat{x}, x_n) + (1 - \beta_{n,0})(1 + k_n)(1 - \alpha_n)\phi(\hat{x}, x_n)
\]
\[
- 2\alpha_n ((1 - \alpha_n)x_n - \hat{x}, J\hat{x})
\]
\[
+ (1 - \beta_{n,0})c_n - \beta_{n,0}\beta_{n,i}g(\|x_n - JT_i(\Pi C T_i)^{n-1}y_n\|
\]
\[
= \left(1 - \frac{\alpha_n}{\alpha_n}
ight)\|\hat{x}, x_n\| + \frac{\alpha_n}{\alpha_n} (1 + k_n)(1 - \alpha_n)\|\hat{x}, x_n\|
\]
\[
- 2\alpha_n ((1 - \alpha_n)x_n - \hat{x}, J\hat{x})
\]
\[
+ \frac{\alpha_n}{\alpha_n} c_n - \beta_{n,0}\beta_{n,i}g(\|x_n - JT_i(\Pi C T_i)^{n-1}y_n\|
\]
\[
= \left(1 - \frac{\alpha_n}{\alpha_n}
ight)\|\hat{x}, x_n\| + \frac{\alpha_n}{\alpha_n} (1 + k_n)(1 - \alpha_n)\|\hat{x}, x_n\|
\]
\[
- 2\alpha_n ((1 - \alpha_n)x_n - \hat{x}, J\hat{x})
\]
\[
+ \frac{\alpha_n}{\alpha_n} c_n - \beta_{n,0}\beta_{n,i}g(\|x_n - JT_i(\Pi C T_i)^{n-1}y_n\|
\]
\[
= \left(1 - \frac{\alpha_n}{\alpha_n}
ight)\|\hat{x}, x_n\| + \frac{\alpha_n}{\alpha_n} (1 + k_n)(1 - \alpha_n)\|\hat{x}, x_n\|
\]
\[
- 2\alpha_n ((1 - \alpha_n)x_n - \hat{x}, J\hat{x})
\]
\[
+ \frac{\alpha_n}{\alpha_n} c_n - \beta_{n,0}\beta_{n,i}g(\|x_n - JT_i(\Pi C T_i)^{n-1}y_n\|
\]
\[
\leq \frac{\alpha_n}{\alpha_n} (1 + k_n)(1 - \alpha_n)\|\hat{x}, x_n\|
\]
\[
- 2\alpha_n ((1 - \alpha_n)x_n - \hat{x}, J\hat{x})
\]
\[
+ \frac{\alpha_n}{\alpha_n} c_n - \beta_{n,0}\beta_{n,i}g(\|x_n - JT_i(\Pi C T_i)^{n-1}y_n\|
\]
\[
\leq \left(1 - \frac{\alpha_n}{\alpha_n}
ight)\|\hat{x}, x_n\| - 2\alpha_n ((1 - \alpha_n)x_n - \hat{x}, J\hat{x})
\]
\[
+ \frac{\alpha_n}{\alpha_n} c_n - \beta_{n,0}\beta_{n,i}g(\|x_n - JT_i(\Pi C T_i)^{n-1}y_n\|
\]
\[
\leq \prod_{i=1}^{n} \beta_{i,0}\|\hat{x}, x_n\| + (1 - \beta_{n,0})\|\hat{x}, x_n\| + \sum_{j=1}^{n} c_j,
\]
\[
(23)
\]
for some \(M > 0\), where \(\alpha_n = (1 - \beta_{n,0})\) for \(n \geq 1\).
Now, we consider the following two cases.

Case I. Suppose that there exists \(N \in \mathbb{N} \) such that \(\{ \phi(x_i, x) \} \) is nonincreasing for all \(n \geq N \). Then \(\{ \phi(x_i, x_n) \} \) is convergent and, so, (23),

\[
\beta_{n,0} \beta_{n,i} g(\|Jx_n - JT_i(\Pi C T_i)^{n-1} y_n\|) \to 0
\]

as \(n \to \infty \). From \(\liminf_{n \to \infty} \beta_{n,0} \beta_{n,i} > 0 \), we have

\[
g(\|Jx_n - JT_i(\Pi C T_i)^{n-1} y_n\|) \to 0
\]

as \(n \to \infty \). Thus, by the property of \(g \), we have

\[
\lim_{n \to \infty} \|Jx_n - JT_i(\Pi C T_i)^{n-1} y_n\| = 0 \quad \text{for each } 1 \leq i \leq N.
\]

Since \(J^{-1} \) is uniformly norm-to-norm continuous on each bounded set, we have

\[
\lim_{n \to \infty} \|x_n - T_i(\Pi C T_i)^{n-1} y_n\| = 0.
\]

From (7), (24) and (25), we obtain

\[
\lim_{n \to \infty} \phi(x_n, T_i(\Pi C T_i)^{n-1} y_n) = 0.
\]

Moreover, it follows from (26) that

\[
\phi(x_n, x_{n+1}) \Rightarrow \phi(x_n, J^{-1}(\beta_{n,0} Jx_n + \sum_{i=1}^{N} \beta_{n,i} JT_i(\Pi C T_i)^{n-1} y_n))
\]

\[
\leq \beta_{n,0} \phi(x_n, x_n) + \sum_{i=1}^{N} \beta_{n,i} \phi(x_n, T_i(\Pi C T_i)^{n-1} y_n)
\]

\[
\leq \sum_{i=1}^{N} \beta_{n,i} \phi(x_n, T_i(\Pi C T_i)^{n-1} y_n) \to 0
\]

as \(n \to \infty \). Since \(\lim_{n \to \infty} \alpha_n = 0 \), it follows that

\[
\phi(x_n, y_n) = \phi(x_n, \Pi C((1 - \alpha_n)x_n)) \leq \phi(x_n, (1 - \alpha_n)x_n)
\]

\[
= \phi(x_n, J^{-1}(\alpha_n x_n) + (1 - \alpha_n)Jx_n)
\]

\[
\leq \alpha_n (x_n, 0) + (1 - \alpha_n)\phi(x_n, x_n)
\]

\[
= \alpha_n (x_n, 0) \to 0
\]

as \(n \to \infty \). From (26)–(28) and Lemma 4, we have

\[
\lim_{n \to \infty} \|x_n - T_i(\Pi C T_i)^{n-1} y_n\| = 0, \quad \lim_{n \to \infty} \|x_n - y_n\| = 0,
\]

\[
\lim_{n \to \infty} \|x_n - x_{n+1}\| = 0.
\]

Furthermore, \(J \) is uniformly norm-to-norm continuous on each bounded set, it follows that

\[
\lim_{n \to \infty} \|y_n - T_i(\Pi C T_i)^{n-1} y_n\| = 0,
\]

\[
\lim_{n \to \infty} \|Jy_n - JT_i(\Pi C T_i)^{n-1} y_n\| = 0,
\]

\[
\lim_{n \to \infty} \|y_n - y_{n+1}\| = 0, \quad \lim_{n \to \infty} \|y_n - y_{n+1}\| = 0.
\]

From (7), it follows that

\[
\lim_{n \to \infty} \phi(y_n, y_{n+1}) = 0, \quad \lim_{n \to \infty} \phi(y_n, T_i(\Pi C T_i)^{n-1} y_n) = 0
\]

for each \(1 \leq i \leq N \) and, from (6), we have

\[
\phi(y_n, T_i y_n) = \phi(y_n, y_{n+1}) + \phi(y_{n+1}, T_i y_n)
\]

\[
+ 2\langle y_{n+1} - y_n, JT_i y_n - JT_i y_{n+1} \rangle
\]

\[
+ \phi(y_{n+1}, T_i(\Pi C T_i)^{n-1} y_n + 2\langle T_i(\Pi C T_i)^{n-1} y_n - T_i(\Pi C T_i)^{n-1} y_{n+1}, JT_i y_n - JT_i y_{n+1} \rangle
\]

Where \(\langle \cdot, \cdot \rangle \) is the inner product in \(\mathbb{R}^k \). By Lemma 5, we have

\[
\lim_{n \to \infty} \|y_n - (\Pi C T_i)^{n-1} y_n\| = 0.
\]

Since \(\phi(y_n, (\Pi C T_i)^{n-1} y_n) \leq \phi(y_n, T_i(\Pi C T_i)^{n-1} y_n) \), it follows from (31) that

\[
\lim_{n \to \infty} \phi(y_n, (\Pi C T_i)^{n-1} y_n) = 0.
\]

Moreover, it follows from Lemma 4 that

\[
\lim_{n \to \infty} \|y_n - T_i y_n\| = 0
\]

for each \(1 \leq i \leq N \). Let \(\{x_{n_k}\} \) be a subsequence of the sequence \(\{x_n\} \) such that

\[
\sup_{i \in [1, N]} \langle (1 - \alpha_n)x_{n_k} - \hat{x}, J\hat{x} \rangle = \lim_{k \to \infty} \langle (1 - \alpha_n)x_{n_k} - \hat{x}, J\hat{x} \rangle
\]

and \(x_{n_k} \to w \). Then, from (28), it follows that \(x_{n_k} \to w \). Hence, By Lemma 1 (ii), we have

\[
\lim_{n \to \infty} \sup_{i \in [1, N]} \langle (1 - \alpha_n)x_{n_k} - \hat{x}, J\hat{x} \rangle = \lim_{k \to \infty} \langle (1 - \alpha_n)x_{n_k} - \hat{x}, J\hat{x} \rangle
\]

\[
= \langle w - \hat{x}, J\hat{x} \rangle \geq 0.
\]

Now, we show that \(x_{n+1} \to \hat{x} \) as \(n \to \infty \). Since \(T_i \) is closed, it follows from (34) that for each \(1 \leq i \leq N \) and \(w \in \bigcap_{i=1}^{N} F(T_i) \), then, from (23), we have

\[
\phi(x_{n+1}, \hat{x}) \leq (1 - \theta_n)\phi(x_n, \hat{x}) - 2\theta_n(\langle 1 - \alpha_n)x_n - \hat{x}, J\hat{x} \rangle
\]

\[
+ [(1 + \theta_n) - 1]M + \frac{\theta_n}{\alpha_n} \phi_n.
\]

Note that \(\lim_{n \to \infty} \theta_n = 0 \) and \(\sum_{n=1}^{\infty} \theta_n = \infty \). By Lemma 5, we have \(\phi(x_{n_k}, x_{n_k}) \to 0 \) as \(n \to \infty \) and, consequently, \(x_{n_k} \to \hat{x}, n \to \infty \).
for each \(i \in \mathbb{N} \). Then, by Lemma 6, there exists a nondecreasing sequence \(\{m_k\} \subset \mathbb{N} \) such that \(m_k \to \infty \),
\[
\phi(\hat{x}, x_{m_k}) \leq \phi(\hat{x}, x_{m_{k+1}}), \quad \phi(\hat{x}, x_k) \leq \phi(\hat{x}, x_{m_k+1})
\]
for all \(k \in \mathbb{N} \). Then, from (23) and \(\theta_n \to 0 \), it follows that
\[
\beta_{m_k} \cdot g(\|J x_{m_k} - J T_i(\Pi C T_i)^{m_k-1} y_{m_k}\|) \\
\leq (1 - \theta_{m_k}) \phi(\hat{x}, x_{m_k}) - \phi(x_{m_k+1}, \hat{x}) \\
- 2 \theta_{m_k} \frac{(1 - \alpha_n) x_m - \hat{x, J x}}{\alpha_m c_{m_k}} \\
+ [(1 + k_{m_k}) - 1] M + \frac{\theta_{m_k}}{\alpha_m c_{m_k}}.
\]
This implies that
\[
g(\|J x_{m_k} - J T_i(\Pi C T_i)^{m_k-1} y_{m_k}\|) \to 0
\]
as \(n \to \infty \). Hence, following the method of Case I, we have
\[
\sup_{i \leq n} (\theta_n - \alpha_n) x_m - \hat{x}, J x) \\
\leq \lim_{n \to \infty} (\theta_n - \alpha_n) x_m - \hat{x}, J x) \\
= \langle w_1 - x, J x) \rangle
\]
(35)

It follows from (23) that
\[
\begin{align*}
\phi(x_{m+k+1}, \hat{x}) &
\leq (1 - \theta_{m_k}) \phi(\hat{x}, x_{m_k+1}) - 2 \theta_{m_k} \frac{(1 - \alpha_n) x_m - \hat{x}, J x}}{\alpha_m c_{m_k} \\
+ [(1 + k_{m_k}) - 1] M + \frac{\theta_{m_k}}{\alpha_m c_{m_k}}.
\end{align*}
\]
Since \(\phi(x_{m_k}, \hat{x}) \leq \phi(x_{m_k+1}, \hat{x}) \), (36) implies that
\[
\begin{align*}
\theta_{m_k} \phi(\hat{x}, x_{m_k}) &
\leq (1 - \theta_{m_k}) \phi(\hat{x}, x_{m_k}) - 2 \theta_{m_k} \frac{(1 - \alpha_n) x_m - \hat{x}, J x}}{\alpha_m c_{m_k} \\
+ [(1 + k_{m_k}) - 1] M + \frac{\theta_{m_k}}{\alpha_m c_{m_k}}.
\end{align*}
\]
In particular, since \(\theta_{m_k} > 0 \), it follows that
\[
\phi(\hat{x}, x_{m_k}) \leq \lim_{k \to \infty} \phi(\hat{x}, x_{m_k}) - 2 \frac{(1 - \alpha_n) x_m - \hat{x}, J x}}{\alpha_m c_{m_k}} \\
+ k_{m_k} \frac{M}{\alpha_m c_{m_k}}.
\]
Hence, from (36) and the fact that \(k_{m_k} \to 0 \), \(M \to \infty \) and \(\epsilon_m \to 0 \) as \(k \to \infty \), it follows that \(\phi(\hat{x}, x_{m_k}) \to 0 \) as \(k \to \infty \), which together with (37) gives \(\phi(\hat{x}, x_{m_k+1}) \to 0 \) as \(k \to \infty \). But, since \(\phi(x_{m_k}, \hat{x}) \leq \phi(x_{m_k+1}, \hat{x}) \) for all \(k \in \mathbb{N} \), we obtain \(x_k \to \hat{x} \) as \(k \to \infty \). Therefore, from the two Cases, we can conclude that \(\{x_k\} \) converges strongly to the minimum norm point of \(\mathcal{F} \). This completes the proof.

ACKNOWLEDGMENTS

This project was supported by the Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart Innovation Research Cluster (CLASSIC), Faculty of Science, KMUTT. Moreover, the work was partially supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (NRU59 Grant No.59000309). The author Mr.Parin Chaipunya was supported jointly from King Monkt’s University of Technology Thonburi (KMUTT) and the Royal Golden Jubilee Ph.D. (RGJ-PhD) program (Grant No. PhD/0045/2555) for their financial support. The author Mr. Anantachai Padcharoen thanks to the Petch Pra Jom Kla Dao Doctoral Scholarship for Ph.D. program at KMUTT (Grant No. 21/2558).

REFERENCES

Mr. Apirak Sombat is a master degree student and programmer at Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi. He is Matlab programmer for the algorithms.

Mr. Anantachai Padcharoen is a Ph.D. student at Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi and lecturer with the Department of Mathematics, Faculty of Science and Technology, Rambhai Barni Rajabhat University (RBRU), Sukhumvit Rd., Thachang, Mueang, Chanthaburi 22000, Thailand. His area of research is fixed point algorithms.

Dr. Teerapol Saleewong is lecture from the Theoretical and Computational Science (TaCS) Center and department of mathematics, Faculty of science, KMUTT. His area of research is mathematical modelling and computational neuroscience.

Dr. Poom Kumam is Head of Theoretical and Computational Science (TaCS) Center and KMUTT-Fixed Point Theory and Applications Research Group. His area of research is Fixed point theory with applications. He had publish more than 350 research in international journal around the world.

Mr. Parin Chaipunya is a Ph.D. student at Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi. He loves coffee!

Dr. Wiyada Kumam is lecturer with the Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Rungsit-Nakorn Nayok Rd., Klong 6, Thanyaburi, Pathum Thani 12110, Thailand. Her area of research is fuzzy linear regression computational algorithms.

Dr. Thana Sutthibutpong is lecture from the Theoretical and Computational Science (TaCS) Center and Theoretical and Computational Physics Group. His area of research is computational modelling of polymers.

Dr. Yeol Je Cho is lecturer with the Department of Mathematics Education and the RINS, Gyeongsang National University, Changu 660-701, Korea and Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia. His area of research is fixed point theory and applications.