H-Infinity Controller Design for the Switched Reluctance Machine

Sivar Fadhel, Imen Bahri, Man Zhang

Abstract—The switched reluctance machine (SRM) has undeniable qualities in terms of low cost and mechanical robustness. However, its highly nonlinear character and its uncertain parameters justify the development of complicated controls. In this paper, authors present the design of a robust H-infinity current controller for an 8/6 SRM with taking into account the nonlinearity of the SRM and with rejection of disturbances. The electromagnetic torque is indirectly regulated through the current controller. To show the performances of this control, a robustness analysis is performed by comparing the H-infinity and PI controller simulation results. This comparison demonstrates better performances for the presented controller. The effectiveness and robustness of the presented controller are also demonstrated by experimental tests.

Keywords—Current regulation, experimentation, robust H-infinity control, switched reluctance machine.

I. INTRODUCTION

The SRM presents an interesting candidate for electrical vehicles thanks to its simple structure, mechanical robustness, and low cost. However, SRM has larger torque ripple and noise compared to other types of machines. These disadvantages may be alleviated either by modifying the motor design [1] or by developing a good control of the motor [2]. The second solution is often used. Generally, for an efficient torque control in electrical machines, the current control which forms the heart of the control must be efficient. Several researches have contributed to the development of linear and nonlinear controls of the SRM. Among these techniques used for the speed control, the feedback-linearization [3], the passivity-based control [4] and sliding mode control [5] are proposed. A current regulator with gain-scheduling PI [6], a hysteresis controller (also called ON-OFF) [7], and a neural and fuzzy logic control [8] are utilized for the current control. These control methods require often an accurate model of the SRM. The design of this controller is based on the electromagnetic characteristics of the machine. The non-linearity of this machine is due to the variation of the phase inductance increment inductance. The results demonstrate better performances in terms of stability and disturbances rejection comparing with a classical PI controller. In this paper, after generating the controller, its gains are adjusted to be suited for the SRM features and overcome the problem of nonlinearity. This adjustment is based on online value of the incremental inductance. The results demonstrate better performances in terms of stability and disturbances rejection comparing with a classical PI controller. This paper is organized as follows. Section II presents the mathematical model of the 8/6 SRM. Section III describes the design of the proposed control. The performances of this controller are verified with simulations in Section IV and then confirmed by experimentation in Section V. Conclusion and discussions end the paper.

II. MATHEMATICAL MODEL OF THE SRM

The proposed controller is designed for a four-phased SRM. The design of this controller is based on the electromagnetic characteristics of the machine. The non-linearity of this machine is due to the variation of the phase inductance depending on the phase rotor positions. The mathematical model of the SRM is given by equations below. The voltage applied to the phase is expressed as:

\[u = Ri + \frac{d\phi(i, \theta)}{dt} \]

(1)
with:

\[\phi = L(i, \theta_e) i \]

\[\frac{d \phi(i, \theta_e)}{dt} = L(i, \theta_e) \frac{di}{dt} + i \frac{dL(i, \theta_e)}{dt} \]

\[\frac{d \phi(i, \theta_e)}{dt} = L(i, \theta_e) \frac{di}{dt} + i(\frac{dL(i, \theta_e)}{dt} \frac{d \theta_e}{dt} + \frac{dL(i, \theta_e)}{dt} \frac{di}{dt}) \]

With \(u \): The voltage applied to the terminals of a phase; \(R \): The resistance of a phase; \(i \): The phase current; \(\phi \): The linkage flux in a phase; \(\theta_e \): The electrical position of the rotor.

From (1) and (4), the phase voltage can be written as

\[u = R i + \left(L(i, \theta_e) + i \frac{dL(i, \theta_e)}{dt} \right) i + i w_e \frac{dL(i, \theta_e)}{dt} \frac{d \theta_e}{dt} + \frac{dL(i, \theta_e)}{dt} \frac{di}{dt} \]

We note that:

\[L_{inc}(i, \theta_e) = \frac{d \phi(i, \theta_e)}{di} = L(i, \theta_e) + i \frac{dL(i, \theta_e)}{di} \]

\[e = i w_e \frac{dL(i, \theta_e)}{dt} \frac{d \theta_e}{dt} \]

Finally, (1) is written as follows:

\[u = R i + L_{inc}(i, \theta_e) \frac{di}{dt} + e \]

where \(w_e \) is the electrical angular velocity, \(e \) is the back E.M.F and \(L_{inc}(i, \theta_e) \) is the incremental inductance. Equation (8) shows that the SRM is represented by a nonlinear model. The terms \(L_{inc}(i, \theta_e) \) and \(e \) are calculated by using the analytical expression of the inductance which varies with the current and rotor position. Equation (8) demonstrates that the back E.M.F is a source of disturbance to compensate in the design of the controller. The SRM incremental inductance profile as a function of electrical position and phase current is given in Fig. 1.

The electromagnetic torque is expressed by (9):

\[T(i, \theta_e) = \frac{1}{2} i^2 \frac{dL(i, \theta_e)}{d \theta_e} \]

The 3-D views of the flux-linkage and the electromagnetic torque are given in Figs. 2 and 3.

III. DESIGN OF THE H-INFINITY CONTROLLER

A. Standard Form

The block diagram considered for the standard H-infinity synthesis is illustrated in Fig. 4.

The standard \(H_\infty \) problem consists in finding an optimal value \(\gamma \approx 1 \), and a controller \(K(s) \) stabilizing the closed loop shown in Fig. 4, and guaranteeing the following inequality:

\[\| W_1(s) \frac{G(s) - T(s)} {S(s) - T(s) K(s) S(s)} \|_\infty < \gamma \]

where \(G(s) \) is the system transfer function, \(S(s) \) is the sensitivity function whose expression is \((1+K(s)G(s))^{-1} \), and \(T(s) = K(s)S(s)G(s) \).

Using condition (9), we infer:

\[|S(s)| < \frac{\gamma}{\| W_1(s) \|} |K(s)S(s)| < \frac{\gamma}{\| W_2(s) \|} |K(s)S(s)G(s)| < \frac{\gamma}{\| W_1(s)W_2(s) \|} |K(s)S(s)G(s)| < \frac{\gamma}{\| W_3(s) \|} \]

(11)

![Fig. 1 Incremental inductance for one phase](image)
Fig. 2 3-D view of flux-linkage characteristic

Fig. 3 3-D view of electromagnetic torque characteristic

Fig. 4 Closed-loop scheme with the weighting transfer functions
The desired performances are introduced through the weighting functions $W_1(s)$, $W_2(s)$, and $W_3(s)$ which have the structure of a first-order function (12). These functions are used to generate an optimal controller utilizing the MATLAB function “hinfsyn”. The H_∞ algorithm is an iterative scheme which allows the designer to refine the first controller obtained from the performances and robustness analysis tools. For this purpose, weighting functions would be readjusted according to the obtained simulation results. In this study, the SRM is modeled as a linear system obtained from (8) and after compensating the effect of the back E.M.F. The nonlinearity caused by the variation of the inductance function of the position and the current is compensated thereafter, as shown in Fig. 6. To develop the controller, the minimum incremental inductance is chosen for this synthesis as an operating point. To consider the variation in the incremental inductance value versus the current and the electrical position of the rotor, we add a stage of compensation to the command obtained at the output of the controller based on the online inductance value. Then, we compensate the back E.M.F to cancel the static error. As a result, the current control loop is as follows:

![Fig. 6 Block diagram of the current loop](image)

B. Choice of the Weighting Functions and Controller Expression

The weighting functions are given by this expression:

$$ W_i = \frac{G_{\infty} \sqrt{|s^2-1|}}{s+2\pi f_0 \sqrt{|s^2-1|}} $$

where: G_{∞}, f_0, and f_0 represent the static gain, the infinity gain, and the cutoff frequency, respectively.

C. Choice of W_1

The choice of W_1 has been made from the specifications on the tracking performances which are as follows:
- Bandwidth of 2000 rad/s to ensure rapid response time
- Module margin of 0.9
- Low gain at low frequency ($<f_0$), here we fixed 10^{-3} for G_{∞}

The numerical weighting function W_1 is given by:

$$ W_1(s) = \frac{0.9s + 871.8}{s + 0.8718} $$

D. Choice of W_2

Here, we specify a cutoff frequency for W_2 to minimize the controller gain at high frequency, in order to reduce the sensitivity to noise that is not considered for these synthesis steps. The other parameters are chosen to keep an optimal value of $\gamma=1$, and the expression of W_2 is:

$$ W_2(s) = \frac{s + 3.145 \times 10^4}{s + 10^5} $$

Fig. 5 Overall structure of the SRM control
E. Choice of W_3

The main effect of this filter is to ensure rejection of disturbances, for this purpose it can be chosen as a constant function. For our synthesis, $W_3(s) = 0.9s$ ensures a maximum rejection disturbance. The bode diagrams of sensitivity function S, K_s function, SG function, and T function are plotted in Fig. 7, with comparison to the designed weighting functions. This figure shows that the four conditions in (11) are verified.

\[
K(s) = \frac{4.993 \times 10^4 s + 4.04 \times 10^7}{s^2 + 5.206 \times 10^7 s + 4.538 \times 10^{11}}
\]

(16)

The final control loop is shown in Fig. 8.

IV. SIMULATION RESULTS

The SRM is controlled in speed through an outer loop speed control using a conventional PI and four inner loops for current regulation. The synoptic of the current controller for the SRM is shown in Fig. 5. We note that the average torque control strategy is used in this study. The speed controller provides the total torque reference, which is considered as an average torque over one conducting period. Then, this torque is distributed over the four phases according to the position of the rotor. The control of the average torque is ensured by the adjustment of three control variables, to wit, the current I^*, the phase turn-on angle θ, and the conduction period θ_p. A lot of combinations of these control variables can produce the same average torque at one specific speed. Therefore, they must be optimized for efficiency or low torque ripples criteria. In this study, minimization of the torque ripples is privileged, therefore an
optimal set of these three control variables \((\psi, \theta_p, I^*)\) over the entire operating range is chosen. After that, they are stored in a look-up table. The linear data interpolation is performed on-line to compute the optimal control parameters depending on the operating point. The simulations are performed by using MATLAB/Simulink for a sampling period \(T_e\) of 100 \(\mu s\). The simulation results are shown in Fig. 9 using the designed controller while the motor is operating at 500 rpm. It illustrates the current profile produced by the four phases of the motor, the speed response and the produced torque. From this curve, we can see that the \(H_\infty\) current controller achieves the desired performance listed in specifications. As a result of the current regulation, the torque regulation is ensured as well.

![Fig. 9 Simulation results of four phases at a speed equal to 500 rpm, 0Nm](image)

A. Robustness Analysis in Frequency Domain

The dynamic performance of the SRM controller could be affected by the parameters variation. The \(H_\infty\) controller’s gains are adapted versus the online inductance variation as explained in section III in order to control the dynamic of the system. Table I reports the dynamic variation of the \(H_\infty\) controller compared with a conventional PI which is designed with the same bandwidth (2000 rad/s) as the \(H_\infty\). The comparison is given for three specific rotor positions (the opposition \(\theta_e=0^\circ\), intermediate position \(\theta_e=90^\circ\); the conjunction \(\theta_e=180^\circ\)). Fig. 10 illustrates the bode diagram of the closed current loop simulated for the three positions. This diagram shows that with the gains adaptation of the \(H_\infty\) controller, the dynamic does not vary depending on the inductance change, and a large bandwidth is guaranteed. However, in the case of PI controller, when the inductance value increases to its maximum, a 28% of bandwidth loss occurs. We notice that the \(H_\infty\) controller guarantees also better stability margin compared to the conventional PI controller and smaller response time as guaranteeing larger bandwidth.
TABLE I

<table>
<thead>
<tr>
<th>ϴ (°)</th>
<th>L (mH)</th>
<th>ωn (rad/s)</th>
<th>ωn (rad/s)</th>
<th>Δψ_{H∞} (°)</th>
<th>Δψ_{H∞PI} (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.38</td>
<td>1940</td>
<td>1770</td>
<td>72.9</td>
<td>63.7</td>
</tr>
<tr>
<td>90</td>
<td>1.8</td>
<td>921</td>
<td>858</td>
<td>44.9</td>
<td>33.5</td>
</tr>
<tr>
<td>180</td>
<td>3.22</td>
<td>691</td>
<td>645</td>
<td>34.8</td>
<td>25.4</td>
</tr>
</tbody>
</table>

B. Robustness Analysis in Time Domain

In this section, the robustness of the proposed current controller against uncertainty and variation of electrical parameters (respectively (L and R)) is considered and simulated with the MATLAB/Simulink SRM model. Afterwards, the robustness against disturbance, such as resistance torque variation, is analyzed. A variation of ±50% and ±20% of the resistance value R and the inductance value L, respectively, is considered at 500 rpm. The current phase curves are represented in Fig. 11. In fact, the variation introduced on the resistance value does not affect the current response and proves that H∞ current loop is less sensitive to parameters variation. However, the inductance variation introduces a small deviation while keeping a good tracking of the current reference. So, we can note that this control guarantees a good robustness against the uncertainty in parameters.

Fig. 12 shows the speed curve with a 1 N.m load torque introduced at 0.5 s for a speed equal to 500 rpm. This curve indicates that the regulator is capable to reject the disturbance.
Fig. 11 Robustness test against resistance variation (a), and inductance variation (b)

Fig. 12 Disturbance rejection for 1N.mat speed equal to 500 rpm

Fig. 13 Experimental test bench
V. EXPERIMENTAL VALIDATION

The experimental validation has been achieved through the test bench illustrated in Fig. 13. This experimental test bench is subdivided in three parts. The first one is a digital control unit which is based on a DSpace platform. It consists of two programmable targets: A Xilinx FPGA card of Virtex5’s family and a DSpace DS1005 card for the implementation of the control algorithm. The second one consists of an SRM 8/6, coupled to an electromagnetic particle brake in order to vary the resistance torque, and a four-phased inverter. The third one is the measuring part. It consists of current sensors to measure the four-phased current, and an encoder to measure the rotor angular position, and speed of the SRM. This implementation has been carried out based on a co-design method. The FPGA is used to measure acquisition (rotor position, four-phased current) and to generate the four MLI signals to command the converter. The Human Machine Interface (HMI), the 3-D table that gives the optimal parameters and the \(H_{\infty} \) controller have been implemented in the DSP card. The controller is discretized with a step of 200 μs. The experimental results shown in Fig. 14 illustrate the current profile for one phase at a speed equal to 500 rpm with an electromagnetic torque of 3 N.m, and Fig. 15 presents the speed waveform which shows the disturbance rejection under varying the torque.

![Fig. 14 Experimental results of four-phased current for 3 N.m at 500 rpm](image1)

![Fig. 15 Experimental speed responses; disturbance rejection at 500 rpm](image2)
VI. CONCLUSION

In this paper, a H-infinity current controller has been designed for an 8/6 SRM. To cope with the nonlinear character of the SRM, a stage of adaptation has been added to complete the control loop. This adaptation compensates the variation of the phase inductance of the SRM, which strongly depends on the rotor position and the phase current. The validation of this control was performed first by means of simulations. The robustness and performances of the control were evaluated and compared with those of a PI controller by using analysis in frequency domain. Simulations results show that the H∞ controller ensures better stability of the dynamic system under varying the phase inductance. Finally, experimental tests were carried out by using an experimental test bench. The obtained results demonstrate that the designed controller gives good performances in tracking and in rejection disturbances. In future work, it would be interesting to use μ-analysis in order to analyze with a better accuracy the uncertainties in parameters and their effect on the frequency evolution.

REFERENCES

