Abstract—The organic–inorganic hybrid perovskite-like \([\text{C}_6\text{H}_5\text{C}_2\text{H}_4\text{NH}_3]_2\text{ZnCl}_4\) (PEA-ZnCl4) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (\(\alpha\)) and optical band gap (\(E_g\)). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 10^5 Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices.

Keywords—Dielectric constants, optical band gap (\(E_g\)), optical parameters, Raman spectroscopy, self-assembly organic inorganic hybrid.

I. INTRODUCTION

RECENT years have witnessed extensive development on organic-inorganic hybrid perovskites, notably from both experimental and theoretical scientific communities, due to their interesting structural, optical and thermal properties [1]–[20]. These make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices [21]–[27]. Their structure consisting of alternating layers between organic and inorganic components, provides substantial opportunities with respect to both combining useful attributes of organic and inorganic components, and gives new properties as result of the interface between the two entities. The optical properties like band gap present one of the interesting features of this kind of compounds. They construct a multi-quantum well energy band: the inorganic anion constructs the well deep of the multiple quantum wells because the energy bands near the Fermi level is mainly governed by the orbital of inorganic atoms, while the organic cation plays the role of a potential barrier [28], and this leads to new multifunctional materials. The visible-ultraviolet light absorbed by the sample gives information about the transparency which is very essential in many optoelectronic applications [29]–[31]. In this work, we report the synthesis, optical and dielectric features of the hybrid PEA-ZnCl4 compound. The powder X-Ray diffraction has been used for a crystallographic characterization. The Raman spectroscopy was used to determine the functional groups of the compound. The transmittance, the absorption coefficient, and the refractive index were determined by UV-visible spectroscopy. The capacitance meter measurements were used to deduce the dielectric constant and dielectric loss of the studied materials.

II. EXPERIMENTAL

A. Synthesis and Powder X-Ray Diffraction

The organic inorganic hybrid perovskite PEA-ZnCl4 was synthesized by saturated solutions method. The starting materials were weighed in stoichiometric proportion and dissolved in a minimum quantity of water/ethanol (1:1 in ratio) as solvent, and few drops of HCl (37%) were added to protonate C6H5C2H4NH2. On the other hand, ZnCl2 was dissolved in 3 ml of water/ethanol. White polycrystalline powder was obtained after few hours when mixing two saturated solutions. The crystalline phase purity of the compound was confirmed comparing the powder X-ray diffraction (P-XRD) pattern to the simulated pattern from its structure as shown in Fig. 1.

![Fig. 1 Experimental and simulated X-Ray diffraction patterns of PEA-ZnCl4](image-url)
B. Characterization Methods

UV-vis diffuse reflectance and transmittance spectroscopy measurements were recorded on a Jasco v-570 spectrophotometer with an integrating sphere over the spectral range 200-2000 nm. A barium sulfate (BaSO4) plate was used as the standard (100% reflectance) on which the finely ground sample from the crystal was coated. Raman spectra measurements in the frequency range 200-3200 cm\(^{-1}\) were carried out on a LabRAM Horiba Jobin Yvon spectrometer equipped with a CCD detector and a HeNe laser (532 nm) at 5 mW. The dielectric measurements were performed on a pellet of about 10 mm in diameter and 0.8 mm in thickness, using an inductance capacitance resistance (LCR) bridge HP, 4284A in the frequency range of 100 Hz to 2 MHz. All measurements were performed at room temperature.

III. RESULTS AND DISCUSSION

The PEA-ZnCl\(_4\) compound crystallizes in the monoclinic system with P2\(_1\)/c space group, and the cell parameters a=7.449(2) Å, b=24.670(3) Å, c=11.187(2) Å, β=91.762(5)° and Z=4 [32]. The structure is consisted of isolated tetrahedral [ZnCl\(_4\)]\(^2-\) in 0D dimension where each Zn ion is coordinated by four chlorine atoms. The cohesion of the structures is established by hydrogen bonding between organic and inorganic components and by Van Der Waals interactions between organic layers (Fig. 2).

A. Raman Spectra

The Raman spectrum of PEA-ZnCl\(_4\) (Fig. 3) was recorded at room temperature in the range of 400-3500 cm\(^{-1}\). The attribution of all bands for the material is based on comparison with some homologous compounds [33]–[37]. The frequency band 3058 cm\(^{-1}\) is assigned to the asymmetric stretching \(\nu_{as}(\text{CH}_3)\) aromatic mode. The observed band at 2740 cm\(^{-1}\) is related to symmetric \(\nu_{sym}(\text{CH}_3)\) and to deformation \(\delta(\text{NH})\) respectively. The band appearing at 1441 cm\(^{-1}\) is ascribed to symmetric stretching \(\nu_{sym}(\text{CH}_3)\) modes. At frequency 1216 cm\(^{-1}\), a deformation in plan \(\omega_{sym}(\text{CH}_3)\) appears. The medium band appearing at 1149 cm\(^{-1}\) is assigned to the twisting \(\tau(\text{CH}_3)\). The band located at 1003 cm\(^{-1}\) is attributed to the deformation \(\delta(\text{C} = \text{C})\) aromatic mode. At lower frequencies, the rocking mode \(\rho(\text{NH}_3)\) is observed at 483 cm\(^{-1}\). The asymmetric and symmetric stretching vibrations of (Zn-Cl) appear at 283 cm\(^{-1}\).

B. Optical Properties

To determine the operative transparency range, the UV-visible transmittance spectrum was recorded in the range of 200-2000 nm. As shown in Fig. 4, we can note that the studied material is optically transparent up to about 300 nm. This transparency remains uniform over the visible region, which indicates that the compound has a high optical homogeneity. The lower cutoff wavelength is found to be about 280 nm. In the infrared range, the sample presents a variation curve. These frequency bands are attributed to the vibrational modes of the organic part. Therefore, the material could be of importance in new generation optoelectronic devices.
The optical constants of such material play critical roles to adapt the needs of technological components [38], [39]. The optical absorption coefficient (α) and the band gap energy (Eg) are the most pivotal parameters. The first one was calculated from the relation: α = (2.303 log (1/T))/d where T is the transmittance, and d is the thickness of the sample. The corresponding variation versus wavelength is depicted in the Fig. 5. It can be seen that this coefficient shows an absorption edge at about 278 nm, and then decreases as the wavelength increases. The shape of the absorption coefficient curves reveals that the material exhibits a direct allowed transition [40]. The band gap parameter is related to the absorption coefficient by the relation αhν = A(hν−Eg)n [41] where hν is the photon energy, A is a constant, Eg is the band gap energy, α is the optical absorption coefficient, and n is an index parameter which reflects the nature of electron transition in the absorption process (n=1/2, 3/2 for a direct transition and n=2, 3 for allowed indirect transition).

The intercept on x (hν) axis, corresponds to zero absorption coefficient in Tauc plot (Fig. 6) and gives the optical band gap energy value. The observed value 4.46 eV is wider than that of a similar compound based on CuCl4 [42], which is about 2.3 eV, and it implies the insulating behavior of the material.

The refractive index value (n) was calculated using Fresnel’s coefficient expression [43], [44]: n = (R+1)/(R-1) +[(1+R)/(1-R)]2−(1-k2)]1/2 where R is the reflectance, and k is the extinction coefficient excerpt from k = λα/4π equation in the visible region for the material. Fig. 7 reveals that the refractive index decreases with the increase of wavelength. The calculated index value for PEA-ZnCl4 at 400 nm (n=2.33), is in good agreement with the refractive index of the ferroelectric material Sr0.61Ba0.3 Nb2O6 (2.35 at 400 nm) [45], therefrom it predicts the ferroelectric behavior of the studied material.

The dielectric behavior of the metal-halide perovskites is related to their structural features and reveals the effect of microstructure on the polarons [46]. The existence of the organic bilayer in PEA-ZnCl4 leads to use this material in high efficiency energy storage devices [47]. Fig. 8 shows the dielectric constants for the studied compound, recorded at room temperature as a function of frequency. We can note that the dielectric constant presents high values up to about 105 Hz, which predicts a ferroelectric behavior of the material, and decreases exponentially with frequency due to a normal behavior of polar dielectric. At low frequency, the space
charge polarization is more predominant, and therefore, decreases until a point of space charge where cannot endure and comply with field-applied externally. As consequently the polarization decreases which led to diminishing of dielectric constant values [48]. The dielectric loss reflects the contribution of both parts intrinsic and extrinsic (crystal structure and imperfections in the crystal) on polarons. The lower values of the dielectric loss shown in Fig. 9 reveal the good quality of the crystal with less defects, which makes this crystal an appropriate candidate for the fabrication of optoelectronic materials [49], [50].

Fig. 9 Dielectric loss for PEA-ZnCl4

IV. CONCLUSION

The organic-inorganic hybrid perovskite-like [C6H5C2H4NH3]2ZnCl4 material was synthesized by saturated solutions method. The vibrations modes of the functional groups were identified by Raman studies. The transmittance in UV-vis spectroscopy. The observed optical band gap energy value 4.46 eV, deduced from UV-vis spectroscopy. The vibrations modes of the functional groups were identified by Raman studies. The transmittance in UV-vis spectroscopy.

REFERENCES

