Abstract—Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords—Artificial neural network, bending angle, fuzzy logic, laser forming.

I. INTRODUCTION

LASER forming process is one of the modern forming processes in which the laser beam moves over the surface of a sheet at specified speed and creates a thermal gradient along the thickness of the sheet. It results the thermal stresses along the sheet thickness, causing plastic deformation of the sheet in the heated area. Iterating the beam movements in a defined path, the produced bending increases, and finally a permanent bend is resulted in the sheet [1]. This process is applied extensively in forming metal and non-metal sheets which used in aerospace, shipbuilding and automobile industries [2]-[5]. Some researchers have been studied laser forming process, such as Edwarssen et al. which have been investigated the effect of clamping the piece on the bending angle [6]. Yanjin et al. have been studied the effect of material properties on the forming of metal sheets [7]. Peng Cheng et al. has been investigated the effect of the different sheet thickness on the bending angle in this process [8]. Also, several studies have been conducted on the effect of the laser beam motion on the surface of the sheet and the resulting bending angle using empirical formula [9]-[12]. Kyrsandy [13] and Cheng Li [14] have been examined the effect of two-dimensional and three-dimensional heat transfer on the bending angle. Jiu Wang [15], Cheng [16], and Simin Fu [17] have been provided a model to predict the bending angle using artificial neural networks (ANN).

The present article tries to provide models to predict the bending angle resulted from the laser forming process, using artificial neural network and fuzzy logic system. The results from these two models were compared to the experimental data [18], and the rate of error was reported for both models. Fig. 1 shows the laser forming process schematically.

II. EXPERIMENTAL SETUP

Empirical experiments were done on the Steel alloy 1.0586 (D3). Laser device which used in the operation is the Co2 type. Laser power and laser speed parameters were considered as input parameters and the bending angle as the output parameter. Process parametric study was conducted by performing 27 data points. Material properties and parameters of laser are shown in Table I.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>300 mm</td>
</tr>
<tr>
<td>Width</td>
<td>150 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>6 mm</td>
</tr>
<tr>
<td>Laser beam diameter</td>
<td>16 mm</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>30 %</td>
</tr>
<tr>
<td>Specific heat</td>
<td>427 J/Kg.°C</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>35.1 W/m.°C</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>12e-6 1/°C</td>
</tr>
<tr>
<td>Density</td>
<td>7860 Kg/m³</td>
</tr>
</tbody>
</table>
III. ARTIFICIAL NEURAL NETWORK

Artificial neural network is an approach which tries to follow the special processing abilities of human brain. This machine learning technique can learn the existing patterns in data using massive parallel processing. Artificial neural network features include the ability to learn, generalize, and parallel processing. Each artificial neural network consists of three layers: input, hidden, and output. There are a number of neurons in input and output layers according to input and output parameters, and the number of neurons in the hidden layer should be calculated with trial-and-error process. A lot of learning algorithms have been proposed for the learning of network (network training) which the most important is TrainLM function. The artificial neural network which used in this study is Feed Forward Back Propagation (FFBP) with 2-7-1 topology. It means that, there are 2, 7, and 1 neurons in input, hidden, and output layers respectively. The schematic of the artificial neural network is shown in Fig. 2.

![Fig. 2 The schematic of the artificial neural network](image)

Selected transfer function in the hidden and output layers is Tansig. The equation of tansig transfer function expresses in (1):

$$f(x) = \frac{2}{1+e^{-x}} - 1$$ \hspace{1cm} (1)

The experimental data were normalized before entering the network using (2). The experimental data points were divided to 80% and 20% for training and testing steps respectively.

$$X_{\text{norm}} = \frac{X - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}}$$ \hspace{1cm} (2)

IV. FUZZY LOGIC SYSTEM

Fuzzy inference system (FIS) is a process which adapts inputs (single or multiple) to outputs, using fuzzy logic. There are two types of fuzzy inference systems, mamdani and sugeno. In these two methods, output is determined linearly. In fuzzy models, at first inputs and outputs should be categorized into fuzzy sets. The next step is to select the inputs and to determine the degree their belonging to corresponding fuzzy sets. This is done according to the function of set membership. Then, the relationship between inputs and outputs is determined by the written terms from these sets (fuzzy rules). In fact, these linguistic statements connect fuzzy sets and fuzzy functions, and the fuzzy network can be trained by these rules and infer the relationship between inputs and outputs. In fuzzy logic, inputs are real numbers and outputs are a fuzzy set or an integration of several fuzzy sets. In fact, the integration of fuzzy sets involves a range of output values, and to obtain a numerical specified output value of the sets, they should be deactivated. Defuzzification set determines a specific number for the output [19].

The present study uses the mamdani fuzzy system and Fig. 3 shows the schematic of the model.

![Fig. 3 The schematic of the Mamdani fuzzy logic system](image)

TABLE II

<table>
<thead>
<tr>
<th>Factors</th>
<th>Bending Angle (°C)</th>
<th>APE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Power (KW)</td>
<td>Speed (m/min)</td>
<td>Exp.</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>MAPF (%)</td>
<td>0.857</td>
<td>2.749</td>
</tr>
</tbody>
</table>
To train the fuzzy model, it was used 80% of data set as in neural network model, and each of input and output parameters is categorized into four or six fuzzy sets. As shown in Fig. 4, the membership function of these sets is as triangular, and also, they are codified using abbreviated letters VVL, VL, L, H, VH, VVH, representing very low, very low, low, high, very high, and very high respectively.

V. RESULTS AND DISCUSSION

Table II presents the test data set of the empirical experiments and the predicted values of artificial neural network and fuzzy logic system with each model’s errors for test data set. As seen, the artificial neural network with a mean absolute percentage error (MAPE) of 0.857% and fuzzy logic with MAPE of 2.749% show a high ability to prediction of bending angle in laser forming process. As shown in Fig. 5, the regression analysis of the artificial neural network with \(R^2=0.9997 \) and fuzzy logic system with \(R^2=0.9985 \) represent a high potential in detecting the correct amounts of bending angle. Considering Fig. 6 indicating the levels generated by the fuzzy logic and the uniform and continuous behavior of the model, it shows the high capability of the fuzzy logic model in predicting the bending angle values.

![Fig. 4 The membership function of process parameters, (a) laser power, (b) laser speed, (c) bending angle](image)

![Fig. 5 Regression analysis of ANN and FIS results versus experimental data set](image)

![Fig. 6 Generated surfaces by fuzzy logic model](image)

![Fig. 7 APE (%) of ANN and FIS results versus number of experiment](image)
If the artificial neural networks and fuzzy logic are trained properly and their accuracy is evaluated, they will have high ability to predicting of bending angle values in the laser forming process, which leads to saving time and cost. Fig. 7 shows the values of absolute percentage error (APE) for artificial neural network and fuzzy logic results. As can be seen, the artificial neural networks with less error values, compared to the fuzzy logic model, shows more ability to predict the bending angle values, although the difference is negligible.

VI. CONCLUSION

In order to predict the bending angle in the laser forming process, several models were presented in this paper, based on artificial neural network and fuzzy logic system. These models were trained using experimental data and their accuracy was tested. Finally, the values of bending angle were predicted using these two models, and the error values were presented for both models. Considering the mean absolute percentage error of 0.857% and 2.749% for artificial neural network and fuzzy logic models, respectively, it was concluded that the artificial neural network model represents more accurate prediction of the bending angle in the process of laser forming, compared to the fuzzy logic model. It is recommended for further future researches to provide models using the artificial neural network in order to predict thermal distribution along the sheet thickness during the laser forming process.

REFERENCES