Evaluation of Thrombolytic Activity of Zingiber cassumunar Roxb. and Thai Herbal Prasaplai Formula

Warachate Khobjai, Suriyan Sukati, Khemjira Jarmkom, Pattaranut Eakwaropas, Surachai Techaoei

Abstract—The propose of this study was to investigate in vitro thrombolytic activity of Zingiber cassumunar Roxb. and Prasaplai, a Thai herbal formulation of Z. cassumunar Roxb. Herbs were extracted with boiling water and concentrated by lyophilization. To observe their thrombolytic potential, an in vitro clot lysis method was applied where streptokinase and sterile distilled water were used as positive and negative controls, respectively. Crude aqueous extracts from Z. cassumunar Roxb. and Prasaplai formula showed significant thrombolytic activity by clot lysis of 17.90% and 25.21%, respectively, compared to the negative control water (5.16%) while the standard streptokinase revealed 64.78% clot lysis. These findings suggest that Z. cassumunar Roxb. exhibits moderate thrombolytic activity and cloud play an important role in the thrombolytic properties of Prasaplai formula. However, further study should be done to observe in vivo clot dissolving potential and to isolate active component(s) of these extracts.

Keywords—Aqueous extract, prasaplai formula, thrombolytic activity, Zingiber cassumunar Roxb.

I. INTRODUCTION

Blood clot formation, thrombosis, has been a severe problem of the blood circulation system. Thrombus or embolus obstructs the blood flow by blocking the vessel therefore depriving blood and oxygen supply to tissue, leading to tissue necrosis. Atherosclerotic diseases such as acute myocardial or cerebral infarction and stroke are serious consequences of the thrombus formed in blood vessels. Usually thrombolytic agents such as streptokinase (SK), urokinase (UK), or tissue-plasminogen activator (t-PA) [1]-[3], are used to dissolve the formed clots in the vessels, however, these drugs have certain limitations which cause severe and sometime fatal disorders including systemic fibrinolysis, anaphylactic reaction, and bleeding tendency [4]-[6].

Traditional herbs have been used since ancient times to treat many diseases. Herbs are often known as safe because they are natural products. Previous studies have shown that many herbs possessed antithrombotic activity [7]-[11]. For instance, methanolic extract of Umbilicaria esculenta exhibited both antithrombotic activity in vivo and in vitro [7]. However, herbs that could be used for thrombolysis has been few reported.

Ayurvedic Prasaplai is a Thai traditional herbal for pain treatment. Prasaplai is derived from “Prasa” and “Plai” in which Prasa means 50% in amounts and Plai is a Thai name of Zingiber cassumunar Roxb. Prasaplai formula contains 50% Z. cassumunar Roxb., while the remaining ingredients consist of equal amounts of each plant including the root of Calamus (Acorus calamus L.), the peel of Kaffir lime (Citrus hystrix DC.), the bulb of Waanomdaeng (Eleutherine americana (Abul.) Merr.), the bulb of Garlic (Allium sativum L.), the fruit of Long pepper (Piper retrofractum Vahl.), the fruit of Black pepper (Piper nigrum L.), the rhizome of Zedoary (Curcuma zedoaria Roscoe.), the rhizome of Ginger (Zingiber officinale Roxb.), the seed of Black cumin (Nigella sativa L.), and two chemical compounds, sodium chloride and camphor [12]. Usually, it was used for pain relief during menstruation dysmenorrheal [13]. This traditional Thai drug has been described by alternative medicine for treatment of primary dysmenorrheal [14].

Z. cassumunar Roxb., a species of plant in the Zingiberaceae family, is a major ingredient in Prasaplai formula. It is cultivated throughout Southeast Asia [15] and widely used as a Thai traditional herb for treatment of inflammation [16], muscular and joint pain [17], rheumatoid arthritis [18], skin diseases [19], asthmatic symptoms [20], [21], abscesses, wound healing, and menstrual disorders, as well as in food in Thailand [22]. The chemical compositions of the rhizome of Z. cassumunar Roxb. have been studied and revealed that there are phenylbutenoids [23], [24], cassumunaquinones [25], β-sesquiphellandrene [26], cassumunarins [27], [28], β-sitosterol, terpinen-4-ol [29], [30], triquinacene 1,4-bis (methoxy), (E)-1-(3,4-dimethoxyphenyl)buta-1,3-diene, (E)-1-(3,4-dimethoxyphenyl) but-1-ene, and (Z)-ocimene [19]. To date, no studies have investigated the thrombolytic properties of Z. cassumunar Roxb. and its formula, Prasaplai. With the aim to evaluate thrombolytic activity of the aqueous extracts from Z. cassumunar Roxb. and Prasaplai formula, we investigated the thrombolytic activity by using in vitro model.

II. MATERIALS AND METHODS

A. Preparation and Extraction of Plant Material

The rhizome of Z. cassumunar Roxb. and the 9 raw herbs composing the Prasaplai formula were purchased from a
traditional herb market at Pathum Thani province, Thailand. The plants were cleaned, cut into small pieces, air-dried, and then ground to powder. Prasaplai formula was prepared from 12 components including 50% of the rhizomes powder of Z. cassumunar Roxb. (81 parts), each eight parts of C. hystricis DC. (peel), A. calamus L. (root), A. sativum L. (bulb), E. americana Merr. (bulb), P. nigrum L. (fruit), P. retrofractum Vahl. (fruit), Z. officinale Roxb. (rhizome), and C. zedoaria Roscoe. (rhizome). N. sativa L. (seed), and 2 chemical compounds which are sodium chloride (8 parts), and camphor (1 part) [12], [31]. The extraction was performed using boiling distilled water decoction technique. The powder portion of Z. cassumunar Roxb. or Prasaplai formula (10% w/v) were soaked in boiling distilled water for 30 minutes at room temperature with occasional stirring. The solution was filtrated through Whatman’s filter paper and the filtrate thus obtained was concentrated by lyophilization [32]. The crude extracts of Z. cassumunar Roxb. and Prasaplai formula were stored at -20°C until used. The percentage of yield extraction and physical appearance of the crude extracts of Z. cassumunar Roxb. and Prasaplai formula were shown in Table I. 5 mg crude extract was suspended in 1 ml distilled water to get a solution of 5 mg/ml.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Yields (%w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW (Negative control)</td>
<td>5.23</td>
</tr>
<tr>
<td>SK (Positive control)</td>
<td>4.62</td>
</tr>
<tr>
<td>ZC (5 mg/ml)</td>
<td>3.92</td>
</tr>
<tr>
<td>PSL (5 mg/ml)</td>
<td>3.92</td>
</tr>
</tbody>
</table>

Results and Discussion

B. Streptokinase (SK)

The commercially available lyophilized vial (Streptase®, CSL Behring GmbH, Marburg, Germany) of 1,500,000 I.U., 5 ml sterile distilled water was added. SK suspension 100 µl (30,000 IU) was used as a standard for in vitro clot lysis method as described by Prasad et al. [33].

TABLE II

EFFECT OF Z. CASSUMUNAR ROXB., PRASAPLAI FORMULA, SK, AND DISTILLED WATER ON DISSOCIATION OF CLOTS PREPARED FROM BLOOD OF NORMAL INDIVIDUALS

<table>
<thead>
<tr>
<th>Sample (n=10)</th>
<th>% Clot Lysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW (Negative control)</td>
<td>5.16±0.71</td>
</tr>
<tr>
<td>SK (Positive control)</td>
<td>3.36</td>
</tr>
<tr>
<td>ZC (5 mg/ml)</td>
<td>2.90</td>
</tr>
<tr>
<td>PSL (5 mg/ml)</td>
<td>3.84</td>
</tr>
</tbody>
</table>

Results and Discussion

Additional of 100 µl SK, a positive control (30,000 I.U.), to the clot showed 64.78±3.04% clot lysis, whereas sterile distilled water (negative control) showed only negligible clot lysis (5.16±0.71) in Table II. The mean difference of clot lysis percentage between positive and negative control was significant (p<0.0001). The thrombolytic comparison of positive control with negative control indicated that the blood clot did not dissolve when distilled water was added to the clot. In vitro thrombolytic activity of crude aqueous extracts from Z. cassumunar Roxb. and Prasaplai formula were determined. The extracts from Z. cassumunar Roxb. and Prasaplai formula showed 17.90±1.92% and 25.21±2.00% of clot lysis, respectively. The mean difference between negative control and Z. cassumunar Roxb. was significant (p<0.05), while Prasaplai formula was statistically more significant (p<0.0001) in Table III and Fig. 1.

This study indicated that both aqueous extracts from Z. cassumunar Roxb. as a positive control, and 100 µl of sterile distilled water as a negative control, along with 100 µl of 5 mg/ml aqueous extracts of Z. cassumunar Roxb. and Prasaplai formula were separately added to the microcentrifuge tubes. The clot lysis of the sample was evaluated after incubation at 37°C for 90 minutes. After incubation, the solubilized clot was separated and the tubes were again weighed to observe the remained clot. The thrombolytic activity was expressed as percentage of clot lysis [33], [34].

\[
\% \text{ clot lysis} = \frac{\text{Weight of clot} - \text{Weight of remaining clot}}{\text{Weight of clot}} \times 100 \quad (1)
\]

Statistical Analysis

Data obtained were analyzed using GraphPad Prism 5 version 5.01 (GraphPad Software Inc. La Jolla, CA, USA). All values are expressed as mean±standard error of the mean for three replicates. Data were analyzed by one-way ANOVA and the statistical significance differences were analyzed using the paired t-test. p<0.05 was considered statistically significant.

III. RESULTS AND DISCUSSION

IV. CONCLUSION

The study indicated that both aqueous extracts from Z. cassumunar Roxb. showed promising thrombolytic activity, which can be further explored for developing new antithrombotic agents. Additionally, the extracts showed potential in promoting clot dissolution, which could have implications in the treatment of cardiovascular diseases.
are evidence that the extracts from officinale activity of the extract. The clot lytic activity of compound(s). By the above obtained results, they can be Prasaplai formula might be a result of one or more active compounds from Z. cassumunar Roxb. and Prasaplai formula. Further studies are ongoing to isolate their bioactive compounds responsible for thrombolytic activity and a dose-response relationship study in vivo model.

Table III

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Mean±SEM (% clot lysis)</th>
<th>p-value when compared to negative control (water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>5.16±2.24</td>
<td>-</td>
</tr>
<tr>
<td>Z. cassumunar Roxb.</td>
<td>17.90±1.92</td>
<td><0.05</td>
</tr>
<tr>
<td>Prasaplai formula</td>
<td>25.21±2.00</td>
<td><0.0001</td>
</tr>
<tr>
<td>SK</td>
<td>64.78±3.04</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Earlier study revealed that ethanolic leaf extract from A. calamus L. showed 13.69% in vitro clot lysis. Moreover, there are evidence that the extracts from A. sativum L. [35] and Z. officinale Roxb. [36] were related to an increased fibrinolytic activity in vivo [37]. These herbal ingredients of Prasaplai formula could possibly enhance the thrombolytic activity of the extract. The clot lytic activity of Z. cassumunar Roxb. and Prasaplai formula might be a result of one or more active compound(s). By the above obtained results, they can be suggested that Z. cassumunar Roxb. and Prasaplai may be useful therapeutic candidates for the prevention or treatment of thrombotic diseases.

IV. Conclusion

We have described the in vitro thrombolytic activity of crude aqueous extracts from Z. cassumunar Roxb. and Prasaplai formula, which are beneficial in Thai traditional medicine. This study may have important implications in the treatment of thrombotic diseases. Furthermore, this finding may indicate the possibility of developing novel thrombolytic compounds from Z. cassumunar Roxb. and Prasaplai formula.

Acknowledgment

The authors would like to thank the financial support granted (Grant no. NRF04115804) from Thai traditional medicine college, Rajamangala University of Technology Thanyaburi, Thailand.

Conflict of Interest

The authors declare no conflict of interest with this study.

References

[15] C. C. Guzman, and S. S. Siemonsa, Plant Resources of South-East Asia,
spices no. 13, Leiden, the Netherlands, 1999.

Kohoj W. was born on the August 25th, 1976 in Uttaradit, Thailand. He received the B.Sc. degree in Medical Technology from the Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand in 2000, the M.Sc. in Forensic Science, Department of Forensic Science, Faculty of Science, Mahidol University, Bangkok, Thailand in 2007.

In 2000, he worked at the Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand as a medical technologist. In 2007, lecturer, Department of Clinical Chemistry, Faculty of Allied Health Sciences, University of Phayao, Phayao, Thailand. In 2010, lecturer, Department of Clinical Chemistry, Faculty of Medical Technology, Western University, Kanchanaburi, Thailand. Currently he is working as a lecturer at the Thai traditional medicine college, Rajamagala University of Technology Thanyaburi. His research interests include safety, efficacy, toxicity, and biological activities from medicinal plants.