Generalized Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

Yuli Hu, Shaoquan Sun

Abstract—The aim of this paper is to introduce the concepts of generalized fuzzy subalgebras, generalized fuzzy ideals and generalized fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

Keywords—BCI-algebras with operators, generalized fuzzy subalgebras, generalized fuzzy ideals, generalized fuzzy quotient algebras.

I. INTRODUCTION

The fuzzy set is a generalization of the classical set. After the introduction of fuzzy sets, there have been a number of generalizations of this fundamental concept, especially, in the branches of mathematics. Imai and Iseki [1], [2] introduced the concept of BCK/BCI-algebras, which are generalizations of BCK-algebras. In 1980, Ming et al. [13] introduced the concept of BCK-algebras with operators and gave several results about it.

II. PRELIMINARIES

We recall some definitions and propositions which may be needed.

Definition 1. [5] \(X;\ast,0\) is a BCI-algebra, if for all \(x, y, z \in X\), it satisfies the following conditions:
1. \((x \ast y) \ast (x \ast z) = (z \ast y) \ast (y \ast x) = 0\);
2. \((x \ast (x \ast y)) = 0\);
3. \(x \ast x = 0\);
4. \(x \ast y = 0\) and \(y \ast x = 0\) imply \(x = y\).

We can define \(x \ast y = 0\) if and only if \(x \leq y\), then the above conditions can be written as:
1. \((x \ast y) \ast (x \ast z) \leq z \ast y\);
2. \(x \ast (x \ast y) \leq y\);
3. \(x \leq y\);
4. \(x \leq y\) and \(y \leq x\) imply \(x = y\).

If a BCI-algebra satisfies \(0 \ast x = 0\), then it is called a BCK-algebra.

Definition 2. [13] \(X;\ast,0\) is a BCI-algebra, a fuzzy subset \(A\) of \(X\) of the form

\[A(y) = \{t \mid t(x), y = x, 0, y \neq x\}\]

is said to be a fuzzy point with support \(x\) and value \(t\), and is denoted by \(x_t\).

Proposition 1. [10] Let \(X;\ast,0\) be a BCI-algebra, if \(A\) is a fuzzy generalized ideal of it, and \(x \ast y \leq z\), then

\[A(x) \cup A(y) \leq A(z) \cup \mu_x, y, z \in X\]

Definition 3. [5] Let \(X;\ast,0\) and \(\langle X;\ast,0\rangle\) be two \(M - BCI\)-algebras, if \(f\) is a homomorphism from \(X;\ast,0\) to \(\langle X;\ast,0\rangle\), and \(f(m) = m f(x)\) for all \(x \in X, m \in M\), then \(f\) is called a homomorphism with operators.
Definition 4. If \(\{x, y, 0\} \) is a BCI-algebra, \(A \) is a non-empty subset of \(X \), and \(mx \in A \) for all \(x \in A, m \in M \), then \(\{x, y, 0\} \) is called an \(M \)-subalgebra of \(\{x, y, 0\} \).

In the following parts, \(X \) always means a \(M \)-BCI-algebra unless otherwise specified.

III. GENERALIZED FUZZY SUBALGEBRAS OF BCI-ALGEBRAS WITH OPERATORS

Definition 5. \(\{x, y, 0\} \) is a BCI-algebra, let \(A \) be a fuzzy subset of \(X \), \(t, \lambda, \mu \in [0,1] \) and \(\lambda < \mu \). If \((x, y) \geq t \), we denoted \(x, y \in A \); if \(t \geq \lambda \) and \((x, y) \geq t + 2 \mu \), we denoted \(x, y \in A \); if \(x, y \in A \) or \(x, y \in A \) and \(x, y \in A \), we denoted \(x, y \in A \).

Definition 6. \(\{x, y, 0\} \) is an \(M \)-BCI-algebra, let \(A \) be a fuzzy subset of \(X \), if it satisfies:

1. \(x, y \in A \) and \(y, t \in A \) implies \((x, y) \geq t \), \(x, y \in A \), \(\forall x, y \in X \), \(t, r \in [0,1] \).
2. \(x, y \in A \) implies \((mx) \in A \), \(x, y \in A \).

Then \(A \) is called an \(M \)-fuzzy subalgebra or a generalized \(M \)-fuzzy subalgebra for short.

Proposition 2. A fuzzy subset \(A \) of \(X \) is a generalized \(M \)-fuzzy subalgebra of \(X \) if and only if it satisfies:

1. \(A(x, y) \geq \lambda \geq A(x) \land A(y) \land \mu, \forall x, y \in X \);
2. \(A(mx) \geq \lambda \geq A(x) \land \mu, \forall x \in X \).

Proof. Suppose that \(A \) is a generalized \(M \)-fuzzy subalgebra of \(X \). We first verify that

\[A(x, y) \geq \lambda \geq A(x) \land A(y) \land \mu, \forall x, y \in X \]

Suppose there exists \(x, y \in X \) such that \(A(x, y) \geq \lambda \land A(x) \land A(y) \land \mu \), choose \(t \) such that \(A(x, y) \geq t \), \(A(x) \land A(y) \land \mu \), then \((x, y) \geq t \), \(\lambda < t \), \(\mu \). Based on Definition 6, \((x, y) \in A \), we have \(A(x, y) < t \), \(\lambda < t \), \(\mu \). Therefore \((x, y) \in A \). Based on Definition 6, \((x, y) \in A \), we have \(A(x, y) \geq t \), \(\lambda < t \), \(\mu \). This is a contradiction, therefore we have \(A(x, y) \geq t \), \(\lambda \geq t \), \(\mu \). We shall now show that \(A(mx) \geq \lambda \geq A(x) \land A(y) \land \mu, \forall x \in X \).

Suppose there exists \(x \in X \) such that \(A(mx) \geq \lambda \land A(x) \land \mu \), choose \(t \) such that \(A(mx) \geq t \), \(A(x) \land \mu \), then \((x) \geq t \), \(t \), \(\mu \). Based on Definition 6, \((x) \in A \), we have \(A(mx) \geq t \), \(\lambda \geq t \), \(t \), \(\mu \). This is a contradiction, therefore we have \(A(mx) \geq \lambda \geq A(x) \land \mu, \forall x \in X \).

Conversely, assume that \(A \) satisfies conditions 1, 2,

1. If \((x) \in A \), \((y) \in A \), \(x, y \in X \), \(t, r \in [0,1] \), then \((x, y) \geq t \), \(\lambda \geq t \), \(t \), \(\mu \). Choose \(T = t \), \(t \), \(\mu \), since \(A \) is a generalized \(M \)-fuzzy subalgebra of \(X \), we have

\[A(x, y) \geq \lambda \geq A(x) \land A(y) \land \mu, \forall x, y \in X \]

if \(t \leq \mu \), then \(A(x, y) \geq t \), so we have \((x, y) \in A \), if \(t > \mu \), then \(A(x, y) \geq t \), thus \(A(x, y) \geq \lambda \geq A(x) \land A(y) \land \mu, \forall x, y \in X \), therefore we have \((x, y) \in A \).

2. If \((x) \in A \), \((y) \in A \), \(x, y \in X \), \(t, r \in [0,1] \), then \((x, y) \geq t \), \(\lambda \geq t \), \(t \), \(\mu \). Then we have \(A(mx) \geq t \), \(\lambda \geq t \), \(t \), \(\mu \). Hence \((mx) \in A \), if \(t > \mu \), then \(A(mx) \geq t \), \(\lambda \geq t \), \(t \), \(\mu \). Thus \((mx) \in A \), therefore we have \((mx) \in A \). So \(A \) is a generalized \(M \)-fuzzy subalgebra of \(X \).

Example 1. If \(A \) is a generalized \(M \)-fuzzy subalgebra of \(X \), then \(X_{t} \) is a generalized \(M \)-fuzzy subalgebra of \(X \), define \(X_{t} \) by

\[X_{t} : X \rightarrow [0,1], X_{t}(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A. \end{cases} \]

Proof. (1) For all \(x, y \in X \), if \(x, y \in A \), then \(x \geq y \in A \), thus

\[X_{t}(x, y) \geq t \geq X_{t}(x) \land X_{t}(y) \land \mu, \forall x, y \in X \]

if there exists at least one which does not belong to \(A \) between \(x \) and \(y \), for example \(x \notin A \), thus

\[X_{t}(x, y) \geq t \geq X_{t}(x) \land X_{t}(y) \land \mu, \forall x, y \in X \]

(2) For all \(x \in X \), \(m \in M \), if \(x \in A \), then \(mx \in A \), therefore

\[X_{t}(mx) \geq t \geq X_{t}(x) \land \mu, \forall x \in X \]

if \(x \notin A \), then \(X_{t}(mx) \geq t \geq X_{t}(x) \land \mu, \forall x \in X \). Therefore \(X_{t} \) is a generalized \(M \)-fuzzy subalgebra of \(X \).

Proposition 3. \(A \) is a generalized \(M \)-fuzzy subalgebra of \(X \) if and only if \(A \) is a \(M \)-subalgebra of \(X \), where \(A \) is a non-empty set, define \(X_{t} \), by

\[A = \{x \in X, A(x) \geq t\}, \forall t \in [0,1] \]

Proof. Suppose \(A \) is a generalized \(M \)-fuzzy subalgebra of \(X \), \(A \) is a non-empty set, \(t \in [0,1] \), then

\[A(x) \land A(y) \land \mu, \forall x, y \in X \]

if \(x \in A \), \(y \in A \), then \(A(x, y) \geq t \), \(\lambda \geq t \), \(t \), \(\mu \). Thus \(A(x, y) \geq t \), \(\lambda \geq t \), \(t \), \(\mu \). We have \(x \in A \).

For all \(x \in X \), \(m \in M \), if \(A \) is a generalized \(M \)-fuzzy subalgebra of \(X \), hence \(A(mx) \geq t \), \(\lambda \geq t \), \(t \), \(\mu \). Thus \(A(mx) \geq t \), \(\lambda \geq t \), \(t \), \(\mu \). We have \(x \in A \).
Suppose there exists $x_0, y_0 \in X$ such that $A(x_0) \lor \lambda < A(x_0 \ast y_0) \land A(y_0) \land \mu$, choose t such that $A(x_0) \lor \lambda < A(x_0 \ast y_0) \land A(y_0) \land \mu$, then $A(x_0) \lor \lambda < A(x_0 \ast y_0) \land A(y_0) \land \mu$. Based on Definition 7, $(x_0) \in \nu q_{(\lambda, \mu)} A$, but we have $A(x_0) < t$, therefore $A(x_0) + t \leq t < 2 \mu$, this is a contradiction, therefore we have $A(x_0) \lor \lambda \geq A(x_0 \ast y_0) \land A(y) \land \mu$, $\forall x, y \in X$.

Next, we shall show that $A(x_0) \lor \lambda \geq A(x) \land \mu$, $\forall x \in X$.
Suppose there exists $x_0 \in X$ such that $A(x_0) \lor \lambda < A(x_0 \ast y) \land A(y) \land \mu$, choose t such that $A(x_0) \lor \lambda < A(x_0 \ast y) \land A(y) \land \mu$, then $A(x_0) + t < A(x_0 \ast y) \land A(y) \land \mu$. Based on Definition 7, $(x_0) \in \nu q_{(\lambda, \mu)} A$, but we have $A(x_0) < t$, therefore $A(x_0) + t \leq t < 2 \mu$, this is a contradiction, therefore we have $A(x_0) \lor \lambda \geq A(x_0 \ast y) \land A(y) \land \mu$, $\forall x, y \in X$.

Finally, we shall show that $A(x_0) \lor \lambda \geq A(x) \land \mu$, $\forall x \in X$.
Suppose there exists $x_0 \in X$ such that $A(x_0) \lor \lambda < A(x_0 \ast y) \land A(y) \land \mu$, choose t such that $A(x_0) \lor \lambda < A(x_0 \ast y) \land A(y) \land \mu$, then $A(x_0) + t < A(x_0 \ast y) \land A(y) \land \mu$. Based on Definition 7, $(x_0) \in \nu q_{(\lambda, \mu)} A$, but we have $A(x_0) < t$, therefore $A(x_0) + t \leq t < 2 \mu$, this is a contradiction, therefore we have $A(x_0) \lor \lambda \geq A(x_0 \ast y) \land A(y) \land \mu$, $\forall x, y \in X$.

Example 2. If A is a generalized M–fuzzy ideal of X, then X_A is a generalized M–fuzzy ideal of X, define X_A by

$$X_A : X \to [0, 1], X_A (x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Proof. (1) For all $x, y \in X$, if $x, y \in A$, then $x \ast y \in A$, thus
(1) If \(x A y \), then \(X A x \). If \(A \) is a generalized \(M \)-fuzzy ideal of \(X \), then \(X A x \). Suppose \(A \) is a \(M \)-fuzzy ideal of \(X \). Then \(A \) is a generalized \(M \)-fuzzy ideal of \(X \).

\[A(f(x)) \cup A(g(x)) \leq A(f(x) \cup g(x)) \cap A(f(x) \cap g(x)) \]

(2) If \(x A y \), then \(X A x \). If \(A \) is a generalized \(M \)-fuzzy ideal of \(X \), then \(X A x \). Suppose \(A \) is a \(M \)-fuzzy ideal of \(X \). Then \(A \) is a generalized \(M \)-fuzzy ideal of \(X \).

\[X A x \]

For all \(x, y \in X \), we have

\[X A x \]

V. GENERALIZED FUZZY QUOTIENT BCI-ALGEBRAS WITH OPERATORS

Definition 8. Let \(A \) be an \(M \)-fuzzy ideal of \(X \), for all \(a \in X \), fuzzy set \(A_a \) on \(X \) defined as:

\[A_a(x) = A(a \cdot x) \land A(x \cdot a) \land \mu, \forall x \in X. \]

Denote \(X/A = \{ A_a : a \in X \} \). Therefore \(f^{-1}(A) \) is a generalized \(M \)-fuzzy ideal of \(X \).
that is \(A_0 \geq A_0 \). Therefore, \(A_0 = A_0 \). We complete the proof.

Proposition 9. Let \(A_0 = A_0, A_0 = A_0 \), then \(A_{\mu\nu} = A_{\nu\mu} \).

Proof. Since

\[
((a*b)(a'*b'))((a*a')(a'*b')) \\
\leq (a*b')(a'*b') \\
((a'*b')(a*b'))((a*b')((a'*b')(a*b')) \\
\leq (a'*b')(a*b') \leq a'a.
\]

Hence

\[
A((a*b)(a'*b')) = A((a*b)(a'*b')) v \lambda \\
\geq A(a*a') \land A(b*b') \land \mu, \\
A((a'*b')(a*b')) = A((a'*b')(a*b')) v \lambda \\
\geq A(b*b') \land A(a*a') \land \mu.
\]

Therefore

\[
A((a*b)(a'*b')) v A((a'*b')(a*b')) \land \mu \\
= A(a*a') \land A(b*b') \land \mu, \\
A((a'*b')(a*b')) v \lambda \\
= A(a*a') \land A(b*b') \land \mu.
\]

it follows from Proposition 8 that \(A_{\mu\nu} = A_{\nu\mu} \), we completed the proof. Let \(A \) be a generalized \(M \)-fuzzy ideal of \(X \), the operation \(m_{\mu} \) of \(R/A \) is defined as follows:

\[
\forall A_0, A_0 \in R/A, A_0 * A_0 = A_{\mu\nu}. \]

By Proposition 8, the above operation is reasonable.

Proposition 10. Let \(A \) be a generalized \(M \)-fuzzy ideal of \(X \), then \(R/A = \{R/A\} \) is an \(M \)-BCI-algebra.

Proof. For all \(A_0, A_1, A_2 \in R/A, \)

\[
((A_0 \ast A_1) \ast A_2) \ast A_3 = A_0 \ast A_1,(A_2 \ast A_3) = A_2; \\
A_1 \ast A_2 \ast A_3 = A_0; \\
A_2 \ast A_3 \ast A_1 = A_0; \\
A_3 \ast A_2 \ast A_1 = A_0; \\
A_1 \ast A_2 = A_1; \\
A_2 \ast A_1 = A_2; \\
A_0 \ast A_2 = A_0; \\
A_2 \ast A_0 = A_0; \\
A_0 = A_0.
\]

Therefore \(\mu/A \) is a generalized \(M \)-fuzzy subalgebra of \(X/A \).

REFERENCES

