Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Nader Ghareeb, Rüdiger Schmidt

Abstract—Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords—Finite element analysis, super-element, state-space model.

I. INTRODUCTION

In modern engineering, weight optimization has always been the highest priority during the design of structures. On one hand, it has the advantage of minimizing the amount of raw material used and thus reducing the manufacturing and operational costs. On the other hand, this results in lower stiffness and less internal damping and thus, the structures become more sensitive to vibrations. These vibrations, which are usually introduced by external disturbances, can lead to additional unwanted noise, a decrease in stability, and even to the failure of the structure itself [1]. One of the means to overcome this problem is the implementation of active or smart materials which can be controlled in accordance to the disturbances or oscillations that are sensed by the structure. Structures with these smart elements are then called smart structures. Recent innovations in smart materials coupled with developments in control theory have made it possible to control the dynamics of the concerned structures. This field has experienced a big growth in terms of research and development [2]. The coupled electromechanical properties of the smart materials, used in this work in form of piezoelectric ceramics, make them well suited for use as distributed sensors and actuators for controlling structural response. In the sensor application, mechanically induced deformations can be determined from measurement of the induced electrical potential (direct piezoelectric effect), whereas in actuator applications deformation or strains can be controlled through the introduction of appropriate electric potential (converse piezoelectric effect) [3]. At the beginning, active vibration control has been applied on ships [4]. The first control technique was to reduce the vibrations on a steam ship by synchronizing two engines in opposite phase [5]. Aircraft and spacecraft have had a great impact on investigations in active control of structural vibration as well. The damping of air craft skin or other parts vibration was performed by dampening the critical vibrations with power transmitted by supersonic waves which may be controlled with an electric or a quartz crystal oscillator [6]. The rapid development in this field lead later to the use of point actuators and sensors to control flexible systems based on the knowledge of the elastic mode frequencies and mode shapes at their location [7]. Although the piezoelectric effect was firstly mentioned by Hauy in 1817, demonstrated by Pierre and Jacques Curie in 1880, yet the use of piezoelectric materials as actuators and sensors for noise and vibration control has been demonstrated extensively over the past 30 years [8]. Bailey [9] designed an active vibration damper for a cantilever beam using a distributed parameter actuator which was a piezoelectric polymer. Bailey and Hubbard [10] developed and implemented three different control algorithms to control the cantilevered beam vibration with piezoelectric actuators. On the other hand, Crawley and de Luis [11] and Crawley and Anderson [12] presented a rigorous study on the stress-strain-voltage behavior of piezoelectric elements bonded to beams. Moreover, they observed that the effective moments resulting from piezoelectric actuators can be seen as concentrated on the two ends of the actuator when the bounding layer is assumed to be very thin.

Many other researchers have also performed significant research on the implementation and use of the piezoelectric actuators like [13]-[15]. All these works emphasize the capabilities and applications of piezoelectric elements as distributed vibration actuators and sensors by simultaneously controlling a finite number of modes. It must be mentioned here that most of the investigations done in this field were based either on experimental results from the laboratory, or on using physical laws to derive the structural analytical model of the smart structure. Moreover, the damping coefficients are
not calculated but rather assumed, which may not reflect the exact performance of the real model.

In the present work, the finite element (FE) method is used. The work comprises the modeling and design of active linear controller to control the vibrations of a smart beam at its tip when its excited with its first natural frequency. Firstly, the piezoelectric actuator is modeled and the relation between voltage and moments at its ends is derived. After that, a modified finite element (FE) model of the smart beam based on the first order shell deformation theory (Mindlin theory) is created. The damping coefficients are then calculated and added to it prior to the reduction to a super element (SE) model with a finite number of degrees of freedom (DOF). Both FE- and SE models are validated by performing a modal analysis and comparing the results with those from the experiments. With the help of a suitable FORTRAN-code, the state-space model is extracted from the SE model. In the last step, a controller based on the Lyapunov stability theory is derived and implemented on the state-space model. Results from both models are shown and compared. The FE-Program SAMCEF® is used for the creation of the FE and SE models, and MATLAB-SIMULINK® is used for the implementation of the controllers in the state-space model.

II. Modeling

The corresponding analytical model of any structure can be derived either from physical laws (i.e. Newton’s motion laws, Lagrange equations of motion, etc.), or from test data using system identification methods (stochastic subspace identification, prediction error method, etc.), or by using the FE modeling [16]. In this work, the FE modeling is used. The smart beam which will be investigated consists of a steel beam, a bonding layer and an actuator (Fig. 1).

A. Actuator Modeling

The application of an actuator means the implementation of an appropriate electric potential to control the vibrations or strains in smart structures (converse piezoelectric effect). Commercial FE programs do not give the possibility to create finite elements with electrical DOF. However, the voltage which is applied by the actuator can be replaced by two equal moments concentrated at its end [13]. The piezoelectric material used is assumed linear throughout this work. The relation between actuator moments and voltage will be derived and the moments will then act as the controlling forces on the smart structure (Fig. 2).

Taking the schematic layout of the middle part of the smart beam (Fig. 3) and considering a one dimensional deformation, if a voltage V is applied across the piezoelectric actuator which is composed of a piezo-ceramic material, a piezoelectric strain ϵ_p will be introduced in the piezo as:

$$\epsilon_p = \frac{d_{31}}{t_1} \cdot V$$

(1)

V is the voltage of the piezoelectric actuator, d_{31} is the electric charge constant and t_1 is the thickness of the piezoelectric layer.

The longitudinal stress is expressed with Hooke’s law as:

$$\sigma_p = E_1 \cdot \epsilon_p$$

(2)

where E_1 is the Young’s modulus of elasticity of the piezo.

This stress generates a bending moment M_p around the neutral axis of the composite beam given by:

$$M_p = \int_{(t_2+t_3-D)} (t_1+t_2+t_3-D) \sigma_p \cdot b \cdot z \, dz$$

(3)

where t_2 is the thickness of adhesive layer, t_3 is the thickness of beam, b is the width of the composite layer at the beam middle, and D is the distance between the beam bottom and the neutral axis.

Considering moment equilibrium about the neutral axis:

$$\int_{beam} \sigma_{beam} \, dA + \int_{adh} \sigma_{adh} \, dA + \int_{piezo} \sigma_{piezo} \, dA = 0$$

(4)

this means:

$$E_3b \int_{(-D)}^{(t_3-D)} z \, dz + E_2b \int_{(t_3-D)}^{(t_2+t_3-D)} z \, dz +$$
of the smart beam is clamped. A 8-node thick shell based on the first order shell deformation theory (FOSD) is used in the description for the FE model. More information about the FOSD is found in [19], [21]. Concerning the optimal element size to be used, its well known that reducing the element size will improve the solution accuracy. However, especially in the case of large complex structures, the use of excessively fine elements in the FE models may result in unmanageable computations that exceed the memory capabilities of existing computers [22]. From (Table III), it is seen that using an element size less than 1 mm does not make any significant change on the values of the 1st and 2nd natural frequencies of the smart beam. This means, an element size of 1 mm will be the best choice in the FE modeling.

2) Damping Characteristics: While the dynamic behavior of many engineering structures can be predicted by using the FE technique for example, nevertheless, there remains the need to find out their damping behavior. Unfortunately, damping parameters, which are of significant importance in determining the dynamic response of structures, can’t be deduced deterministically from other structural properties. For this reason, recurs must be made to data from experiments conducted on completed structures of similar characteristics. Although such data is scarce in general, but its very valuable for studying the phenomenon and modeling of damping [23]. In fact, there are many non-linear damping models available [24]. In this work, the damping is assumed to be viscous and frequency dependent for the sake of convenience and simplicity [25]. A special case of viscous damping is known as the proportional or Rayleigh damping. This model expresses the damping matrix as a linear combination of the mass and stiffness matrices of the undamped model [26]:

$$C = \alpha M + \beta K$$ \hspace{1cm} (8)

where α and β are real scalars that need to be determined. In fact, there are more than one method to determine them [27], [28]. Yet, a modified form of the method developed by Chowdhury and Shambhu [29] and validated by Giosan [30] will be used in this work.

Writing (8) in the modal form will give:

$$\phi^T C \phi = \alpha \phi^T M \phi + \beta \phi^T K \phi$$ \hspace{1cm} (9)

hence, ϕ represents the mode shapes and ϕ^T shows their transpose.

Since the mode shapes corresponding to distinct natural frequencies are orthogonal w.r.t. the mass and stiffness matrices, it follows that [14]:

$$\phi_i^T M \phi_j = \mu_i \delta_{ij}$$ \hspace{1cm} (10)

$$\phi_i^T K \phi_j = \mu_i \omega_i^2 \delta_{ij}$$ \hspace{1cm} (11)

\[TABLE I \]

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>BEAM</th>
<th>BONDING LAYER</th>
<th>ACTUATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>7900</td>
<td>1180</td>
<td>7800</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.5</td>
<td>0.036</td>
<td>0.25</td>
</tr>
<tr>
<td>Young’s mod.</td>
<td>210000</td>
<td>3546</td>
<td>66667</td>
</tr>
</tbody>
</table>

\[TABLE II \]

<table>
<thead>
<tr>
<th>VALIDATION OF ELEMENT-TYPE BASED ON THE MODAL ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE model</td>
</tr>
<tr>
<td>1st eigenfrequency [Hz]</td>
</tr>
<tr>
<td>2nd eigenfrequency [Hz]</td>
</tr>
</tbody>
</table>
\[\xi = \frac{1}{2} \left(\frac{\alpha}{\omega_i} + \beta \omega_i \right) \]
8) A fourth set of data based on the average values of α and β from steps 5 & 7 is obtained.
9) The last three sets of data based on (16) are plotted.
10) Data which fits best with the linear interpolation curve for the first m significant modes is checked.
11) Based on the previous step, the desired values of α and β which give the incremental damping ratio based on Rayleigh damping are selected.

Concerning the smart beam considered in this work, it was found that the first set of data i.e. (\(\xi_1, \omega_1\)) and (\(\xi_m, \omega_m\)) complies with the linear interpolation curve better than the other data. Thus:

\[
\alpha = 0.02577, \quad \beta = 9.918e^{-6}
\]

III. THE SUPER ELEMENT TECHNIQUE

The main objective of the SE technique (also called substructure technique) is the ability to perform the analysis of a complete structure by using results of prior analysis of different regions comprising the whole structure. When a preliminary analysis of the different parts is performed, the computation time and the size of the whole system will be drastically reduced. Moreover, all DOF considered useless for the final solution will be condensed and the rest will be retained. This means, the DOF of the whole system will correspond to the retained nodes plus a number of internal deformation modes (dynamic analysis problems).

The SE techniques has also its drawbacks. The stiffness matrix of the substructures will be saved externally and it can’t be changed during the analysis of the whole structure. The stiffness and mass matrices will be saved in a database file, which will need much space of the hard disk once the number of substructures will increase. In addition, no much information is available about the connection between SEs created to form the main structure. More about this topic is available in the SAMCEF tutorials [21]. To construct a SE or, in other words, to remove the unwanted nodes and DOF from the substructure, more than one method can be used. An example of these methods are the “Guyan reduction technique” [32], and the “Component-mode method” which is used in this work.

A. The Component-Mode Method

This method, also called Craig-Bampton method, was initially developed by R. Craig and M. Bampton [33]. The basic idea of it is to split the basic substructure into a certain number of substructures. The DOF of each substructure are then classified into boundary DOF and internal DOF. The boundary DOF are shared by several substructures, while the internal DOF belong only to the considered substructure.

The behavior of each substructure is described by the combination of two types of component modes, the constrained modes and the normal vibration modes. The former are determined by assigning a unit displacement to each boundary DOF while all other boundaries DOF are being fixed. The latter correspond to the vibration modes obtained by clamping the structure at its boundary.

It is thus assumed that the behavior of the substructure in the global system can be represented by superimposing the constrained modes and a small number of normal modes. Hence, by retaining only the low-frequency vibration modes, the substructure’s dynamic deformed shape is represented with sufficient accuracy. This method is discussed in details in [34].

B. SE Modeling

Before the SE is created, the retained nodes and the condensed nodes must be designated, and the number of internal modes to be used must be specified. Once again, the number of modes must correspond to at least 95% participation of the mass. The retained nodes are usually those where boundary conditions are added, or where stresses, displacements, etc. are imposed or measured. In the current work, ten internal modes are used and the retained nodes are those where the clamp is added and the actuators and sensors are placed. All other nodes will be condensed. Concerning
the smart beam used in this work, there are five retained nodes in the SE model (Fig. 6), and they comprise:

- a clamp constraint on node 1
- the actuator moments, i.e. the control forces, on nodes 2 and 3
- an additional sensor to measure the vibrations on node 4 (it will be used in future works)
- a sensor to measure the vibrations on node 5

![Fig. 6 The retained nodes of the super element](image)

C. Comparison between FE and SE Model

The number of nodes, elements and DOF of SE and FE models are listed in (Table IV). It is clear that the number of elements, nodes, and DOF was reduced. This lead also to a smaller structure and less computation time.

<table>
<thead>
<tr>
<th></th>
<th>FE model</th>
<th>SE model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes</td>
<td>8206</td>
<td>5</td>
</tr>
<tr>
<td>Number of elements</td>
<td>2575</td>
<td>1</td>
</tr>
<tr>
<td>DOF</td>
<td>49236</td>
<td>34</td>
</tr>
</tbody>
</table>

D. Validation of the SE Model

In order to validate the SE model, modal analysis is performed and results are compared to those from the FE model (Table V). It is clear that the results of modal analysis on both models did not show a big difference on the first four natural frequencies. Since the controller will be designed to control the vibrations after exciting the model with its first natural frequency only, further readings are not necessary.

IV. THE STATE SPACE MODEL

The fundamental equation describing the dynamic behavior of a damped structure discretized by the FE method is written in the form:

$$M\ddot{q}(t) + C\dot{q}(t) + Kq(t) = f(t)$$ \hspace{1cm} (19)

where \(q(t)\) is the state vector which collects the displacements of the structure by DOF, and \(f(t)\) is a vector expressing the applied loads. If the total number of DOF of the FE model is \(n\), then the dimension of the state vector \(q(t)\) will be also equal to \(n\), and that of the mass, stiffness and damping matrices will be \(n\times n\). In this work, \(n\) will be 49236 if the full FE model will be used. However, since a SE was constructed, and the desired results concern specific locations of the structures only, \(n\) was reduced to \(s\), where \(s = r + m = 6\).

\(r\) is the number of retained nodes, \(m\) is the number of internal modes chosen, and the number 6 corresponds to the rigid body modes that will be automatically eliminated. The new form of the mass, stiffness and damping matrices will have the size \(s \times s\), which is 34 in case of the smart beam. The state-space model is written according to (19) with dimensions of the SE model. The general form is:

$$\dot{x} = Ax + Bu, \text{ and } y = Cx + Du$$

the state vector \(x\), the input vector \(u\) and the output vector \(y\) are defined as:

$$x = \begin{bmatrix} q_1 \\ \vdots \\ q_s \end{bmatrix}, \quad u = \begin{bmatrix} \dot{q}_1 \\ \vdots \end{bmatrix}, \quad y = \begin{bmatrix} \dot{q}_1 \\ \dot{q}_1 \\ \vdots \end{bmatrix}$$

and \(A, B, C\) and \(D\) are called the system state-space representation and \(F\) is the external load applied. So that:

$$A = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}B \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ -M^{-1} \end{bmatrix}$$
$$C = \begin{bmatrix} I & 0 \\ -M^{-1}K & -M^{-1}B \end{bmatrix}, \quad D = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

size \((A) = 2s \times 2s, \quad \text{size} \((B) = 2s \times \text{in} \)

size \((C) = \text{out} \times 2s, \quad \text{size} \((D) = \text{out} \times \text{in} \)

where \(\text{out}\) is the no. of outputs from the system, and \(\text{in}\) is the no. of inputs to the system.

By using a FORTRAN code, and upon specifying the types and positions of inputs and outputs, the state-space model was extracted.

V. CONTROLLER DESIGN

The performance of smart structures for active vibration control depends strongly on the control algorithm accompanied by it. As outlined previously, one of the objectives of this work is to design a controller which is able to damp the first vibrational mode of the smart beam. The beam is excited with its first natural frequency and then it is left to vibrate freely. At the moment when free vibration begins, the controller is activated. Concerning the control algorithm, the Lyapunov stability theorem is used. It is assumed here that damping the first natural frequency will not affect other natural frequencies which are not investigated in this work.

A. Lyapunov Stability Theorem

Although there is no general procedure for constructing a Lyapunov function, yet any function can be considered as a candidate function if it meets some requirements, i.e. if its positive definite, equal to zero at the equilibrium state and if its derivative is less or equal to zero [35].

In this work, the energy equation of a thin Bernoulli-Euler beam (20), which is modeled as one FE in a one-dimensional system with length \(h\) and left point coordinate \(x_l\), will be considered as the Lyapunov function candidate.

$$U = \frac{1}{2} \int_{x_l}^{x_l+h} \left[\rho \left(\frac{\partial y}{\partial t} \right)^2 + EI \left(\frac{\partial^2 y}{\partial x^2} \right)^2 \right] dx$$ \hspace{1cm} (20)
This function is locally positive definite, it is continuously differentiable and equal to zero at the equilibrium state. Yet, according to the last requirement for Lyapunov functions, the derivative of this function (21) must be smaller or less than zero too.

\[
\dot{U} = \int_{x_i}^{x_i+h} \left[\rho \ddot{y} + EJ \frac{\partial^2 y}{\partial x^2} \frac{\partial^2 y}{\partial x^2} \right] dx
\]

(21)

Substituting the derived equations for the bending moment \(M \), shear force \(V \), and after assuming no shear [32], the first derivative will become:

\[
\dot{U} = M \left(\dot{y}'_{x_i+h} - \dot{y}'_{x_i} \right)
\]

(22)

to ensure that (22) is always smaller or equal to zero, the actuator moment \(M \) can have the value:

\[
M = -k \left(\dot{y}'_{x_i+h} - \dot{y}'_{x_i} \right)
\]

(23)

where \(k \) is a positive constant. Subst. (23) in (22) yields:

\[
\dot{U} = -k \left(\dot{y}'_{x_i+h} - \dot{y}'_{x_i} \right)^2 \leq 0
\]

(24)
in this case, (23) can be used as the controller for the smart beam. The intention of the current work is to design a functional controller and not an optimal one, thus \(k = 30 \) is used and the controller is implemented in the state-space model.

1) SE Model with Controller: There are many ways to add a controller to a SE model in SAMCEF. In this work, the nonlinear forces element (FNLI) is used [21]. This element enables the insertion of a list of \(n \) general linear or nonlinear internal forces as a function of a list of \(n \) DOF and their derivatives. Concerning the smart beam used in this work, two equal moments at nodes 2 and 3 (but with opposite directions) were added, where each one of them is a function of the velocities at both nodes according to (23).

The beam was excited with its 1st natural frequency, and then it was left to vibrate freely (Fig. 7). At the moment when free vibrations started \((t = 20 \, s) \), the controller was activated. Three different values for the constant \(k \) were used for the controller design, and results are shown in (Fig. 8). The implementation of the controller changed the natural frequency of the system as well. In the FFT spectrum diagram (Fig. 9), the effect on the natural frequency of the smart beam and its magnitude is illustrated.

2) State-Space Model with Controller: In the state-space representation of the smart beam, MATLAB/SIMULINK is used to design and implement the controller. However, two steps must be done. In step one, the only input is the forced excitation with the first natural frequency, and the output contains the state vectors which will be fed as initial conditions in the second step. In the second step, the input consists of the two actuator moments, and the output comprises the tip displacement at the fifth node and the velocities at the second and third nodes (Fig. 10). Based on the Lyapunov stability theorem, the last two outputs, multiplied by a constant \(k \) are fed back as actuator moments in different directions. The results are depicted in (Fig. 11).

3) Comparison of Results from SE Model and State-Space Model: The controller has been implemented on both models and the results were almost the same. This can be seen in the case when the constant \(k = 5 \) for example. Yet, if the curves are slightly zoomed, a very small difference appears (Fig. 12). This is because the time steps used in both models were different. It was not possible to use a fixed time step in the state-space model. Using a SE model decreased the simulation time, although more results (like stresses, energy curves, etc) could be gleaned out from it. However, the controller could be easier designed and implemented in the state-space model.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, the basic procedures for modeling and simulation of a smart beam were presented. At the beginning, the relation between actuator velocity and actuator moments was derived. A FE model was created and the damping coefficients were calculated using data from experimental results. A SE model was then deduced from the FE model and then the state-space model was derived. A controller based on the Lyapunov stability theory was designed and implemented to control the free body vibrations of the smart beam once excited by its first natural frequencies. Results from both models were shown and compared.

In the future, other types of controllers will be used. Nevertheless, more natural frequencies will be controlled and the possibility to implement the controllers experimentally will be investigated.
Fig. 7 Forced excitation (till t=20s) and free body vibration of the smart beam.

Fig. 8 Tip displacement vs. time with and without controller during the free vibration (SE model is used).

Fig. 9 The FFT spectrum of the smart beam.
Fig. 10 The state-space model of the smart beam with controller

\[\begin{align*}
 x' &= Ax + Bu \\
 y &= Cx + Du
\end{align*} \]

Fig. 11 Tip displacement vs. time with and without controller during the free vibration (state-space model is used)

Fig. 12 Tip displacement vs. time using the SE and the state-space models

REFERENCES

pp 1373-1385.

[18] Nader Ghareeb received his B.S. Degree in Mechanical Engineering from Beirut Arab University in 2001. After working for one year as HVAC engineer, he joined the RWTH Aachen University in Germany and received the M.Sc. in "Simulation Techniques in Mechanical Engineering" in February 2005. After working for three years in the simulation of wind turbines bed-plates, he returned to the RWTH Aachen University of Technology and received his Ph.D. Degree in Mechanical Engineering in April 2013. In September 2013 he joined the Australian College of Kuwait where he currently holds the position of assistant Professor at mechanical engineering department. Dr. Ghareeb's research interests are: Active linear control, Smart structures, Multi-body simulation, Finite element analysis, Blast simulation and Wind turbines.

Rüdiger Schmidt is Professor Emeritus at the Faculty of Mechanical Engineering, RWTH Aachen University. Rüdiger does research in Aerospace Engineering, Structural Engineering and Mechanical Engineering. The current project is 'Non-linear analysis of laminated panels.'