Remarks on Some Properties of Decision Rules

Songlin Yang and Ying Ge

Abstract—This paper shows that some properties of the decision rules in the literature do not hold by presenting a counterexample. We give sufficient and necessary conditions under which these properties are valid. These results will be helpful when one tries to choose the right decision rules in the research of rough set theory.

Keywords—Rough set, Decision table, Decision rule, coverage factor.

I. INTRODUCTION

In order to extract useful information hidden in voluminous data, many methods in addition to classical logic have been proposed. Rough set theory, which was proposed by Z. Pawlak in [3], plays an important role in applications of these methods. Their significance has been demonstrated by many successful applications in pattern recognition and artificial intelligence [1][2][5][9][10][11]. An important application of rough set theory is to induce decision rules that indicate the decision class of an object based on its values on some condition attributes [3][5]–[8]. In the past years, investigations for decision algorithms aroused extensive attentions of research community and some interesting results were obtained. The following proposition was given for properties of decision rules in [4][6].

Proposition 1: Let \(C \rightarrow_x D \) be a decision rule. Then the following properties are valid:

\[
\begin{align*}
\sum_{y \in C} cer_y(C, D) &= 1, \\
\sum_{y \in D} cov_y(C, D) &= 1, \\
\pi(D(x)) &= \sum_{y \in C} cer_y(C, D)\pi(C(y)) = \sum_{y \in C} \sigma_y(C, D), \\
\pi(C(x)) &= \sum_{y \in D} cov_y(C, D)\pi(D(y)) = \sum_{y \in D} \sigma_y(C, D), \\
\frac{cov_x(C, D)}{\pi(C(x))} &= \frac{\sigma_x(C, D)}{\pi(C(x))}.
\end{align*}
\]

II. PRELIMINARIES

In this section, we recall some basic concepts from rough set theory [6]. Let \(S = (U, C, D) \) be a decision table, where \(U \) is a universe of discourse, \(C \) and \(D \) are disjoint sets of condition and decision attributes. Every \(x \in U \) determines a sequence \(c_1(x), c_2(x), ..., c_n(x), d_1(x), d_2(x), ..., d_m(x) \) where \(\{c_1, c_2, ..., c_n\} = C \) and \(\{d_1, d_2, ..., d_m\} = D \). The sequence will be called a decision rule induced by \(x \) and denoted by \(c_1(x), c_2(x), ..., c_n(x) \rightarrow d_1(x), d_2(x), ..., d_n(x) \) or in short \(C \rightarrow_x D \). The decision granule and the decision granule induced by \(x \), respectively.

Definition 1: The number

\[
supp_x(C, D) = |C(x) \cap D(x)|
\]

is called the support of the rule \(C \rightarrow_x D \) in \(S \), where \(|C| \) denotes the cardinality of \(C \).

Definition 2: The number

\[
cer_x(C, D) = \frac{|C(x) \cap D(x)|}{|C(x)|}
\]

is called the certainty factor of the decision rule \(C \rightarrow_x D \) in \(S \), where \(C(x) \neq \emptyset \).

Definition 3: The number

\[
cov_x(C, D) = \frac{|C(x) \cap D(x)|}{|D(x)|}
\]

is called the coverage factor of the decision rule \(C \rightarrow_x D \) in \(S \), where \(D(x) \neq \emptyset \).

Definition 4: The number

\[
\sigma_x(C, D) = \frac{supp_x(C, D)}{|U|}
\]

is called the strength of the rule \(C \rightarrow_x D \) in \(S \).

For \(x \in U \), let \(\pi(C(x)) = \frac{|C(x)|}{|U|} \) and \(\pi(D(x)) = \frac{|D(x)|}{|U|} \).
III. A COUNTEREXAMPLE

In this section, we exemplify that the properties (1)-(6) in Proposition 1 are invalid by a counterexample.

Example 1: In Table 1, 7 facts concerning 7 cases of driving a car in various driving conditions are presented. In the table columns labeled weather, road and time, are called condition attributes, which represent driving conditions. The table columns labeled accident are called decision attributes.

Table 1: An example of information system

<table>
<thead>
<tr>
<th>Fact No.</th>
<th>Weather</th>
<th>Road</th>
<th>Time</th>
<th>Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₀₁</td>
<td>misty</td>
<td>icy</td>
<td>day</td>
<td>yes</td>
</tr>
<tr>
<td>N₀₂</td>
<td>foggy</td>
<td>icy</td>
<td>night</td>
<td>yes</td>
</tr>
<tr>
<td>N₀₃</td>
<td>misty</td>
<td>not icy</td>
<td>night</td>
<td>yes</td>
</tr>
<tr>
<td>N₀₄</td>
<td>sunny</td>
<td>icy</td>
<td>day</td>
<td>no</td>
</tr>
<tr>
<td>N₀₅</td>
<td>foggy</td>
<td>icy</td>
<td>night</td>
<td>no</td>
</tr>
<tr>
<td>N₀₆</td>
<td>misty</td>
<td>not icy</td>
<td>night</td>
<td>no</td>
</tr>
<tr>
<td>N₀₇</td>
<td>sunny</td>
<td>icy</td>
<td>day</td>
<td>no</td>
</tr>
</tbody>
</table>

The certainty and coverage factors for the decision algorithm are shown in Table 2.

Table 2: Certainty and coverage factors

<table>
<thead>
<tr>
<th>Fact No.</th>
<th>Certainty</th>
<th>Coverage</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₀₁</td>
<td>x₁</td>
<td>1.0000</td>
<td>0.3333</td>
</tr>
<tr>
<td>N₀₂</td>
<td>x₂</td>
<td>0.5000</td>
<td>0.3333</td>
</tr>
<tr>
<td>N₀₃</td>
<td>x₃</td>
<td>0.5000</td>
<td>0.3333</td>
</tr>
<tr>
<td>N₀₄</td>
<td>x₄</td>
<td>1.0000</td>
<td>0.5000</td>
</tr>
<tr>
<td>N₀₅</td>
<td>x₅</td>
<td>0.5000</td>
<td>0.2500</td>
</tr>
<tr>
<td>N₀₆</td>
<td>x₆</td>
<td>0.5000</td>
<td>0.2500</td>
</tr>
<tr>
<td>N₀₇</td>
<td>x₇</td>
<td>1.0000</td>
<td>0.5000</td>
</tr>
</tbody>
</table>

Now we check the properties (1)-(4) in Proposition 1. For N₀₄, we obtain following results.

$$\sum_{y \in C(x)} cer_y(C, D) = 2 \neq 1.$$
$$\sum_{y \in D(x)} cov_y(C, D) = 1.5 \neq 1.$$

These show that the property (1) and (2) in Proposition 1 are not true.

For N₀₁, we get following results.

$$\pi(D(x₁)) = 0.4286$$
$$\sum_{y \in C(x₁)} cer_y(C, D)\pi(C(y)) = 0.1429.$$

It is clear that

$$\pi(D(x₁)) \neq \sum_{y \in C(x₁)} cer_y(C, D)\pi(C(y)).$$

thus the property (3) in Proposition 1 is not true.

For N₀₁, we have the results as below.

$$\pi(C(x₁)) = 0.2857$$

$$\sum_{y \in D(x₁)} cov_y(C, D)\pi(D(y)) = 0.8571.$$

It is clear that

$$\pi(C(x₁)) \neq \sum_{y \in D(x₁)} cov_y(C, D)\pi(D(y)).$$

thus the property (4) in Proposition 1 is not true.

But for N₀₄,

$$\pi(D(x₄)) = 0.5714$$

$$\sum_{y \in C(x₄)} cer_y(C, D)\pi(C(y)) = 0.5714.$$

These show that the property (3) in Proposition 1 is true.

IV. SUFFICIENT AND NECESSARY CONDITIONS OF THE PROPERTIES

In this section we give the sufficient and necessary conditions such that the properties (1)-(6) in Proposition 1 are true.

Lemma 1: Let \(x, y \in U \) and \(C \rightarrow_x D \) be a decision rule, then the following are equivalent.

1. \(\sum_{y \in C(x)} cer_y(C, D) = 1 \).
2. \(C(y) \cap D(y) = \{y\} \) for each \(y \in C(x) \).

Proof: (1) \(\Rightarrow \) (2): If \(\sum_{y \in C(x)} cer_y(C, D) = 1 \), i.e. \(\sum_{y \in C(x)} \frac{|C(y)\cap D(y)|}{|C(y)|} = 1 \).

By Lemma 1(1), we have \(C(y) = C(x) \) for each \(y \in C(x) \). so

$$\sum_{y \in C(x)} |C(y)\cap D(y)| = |C(x)|,$$

For each \(y \in C(x) \), we have \(y \in C(y) \cap D(y) \), hence \(|C(y)\cap D(y)| \geq 1 \).

In fact, if \(|C(y')\cap D(y')| > 1 \) for some \(y' \in C(x) \), then

$$\sum_{y \in C(x)} |C(y)\cap D(y)| > |C(x)|,$$

This is a contradiction.

Thus we obtain that \(|C(y)\cap D(y)| = 1 \) for each \(y \in C(x) \), i.e. \(C(y) \cap D(y) = \{y\} \) for each \(y \in C(x) \),

(2) \(\Rightarrow \) (1): If \(C(y) \cap D(y) = \{y\} \) for each \(y \in C(x) \), then

$$\sum_{y \in C(x)} cer_y(C, D) = \sum_{y \in C(x)} \frac{|C(y)\cap D(y)|}{|C(y)|}$$

$$= \sum_{y \in C(x)} \frac{|y|}{|C(y)|}$$

$$= \frac{\sum_{y \in C(x)} |y|}{|C(x)|} = 1.$$
Theorem 2: Let $x \in U$ and $C \rightarrow_x D$ be a decision rule, then the following are equivalent.

(1) $\sum_{y \in D(x)} \text{cov}_y(C, D) = 1$.

(2) $C(y) \cap D(y) = \{y\}$ for each $y \in D(x)$.

Secondly, we look at the property (3) and the property (4) in Proposition 1.

Lemma 2: Let $x \in U$ and $C \rightarrow_x D$ be a decision rule, if

$$\pi(D(x)) = \sum_{y \in C(x)} \text{cer}_y(C, D) \pi(C(y))$$

and

$$\pi(C(x)) = \sum_{y \in D(x)} \text{cov}_y(C, D) \pi(D(y)),$$

then the following hold.

(1). $|C(x)| = |D(x)|$.

(2). $\sum_{y \in C(x)} \text{cer}_y(C, D) = 1$.

(3). $\sum_{y \in D(x)} \text{cov}_y(C, D) = 1$.

Proof: If $\pi(D(x)) = \sum_{y \in C(x)} \text{cer}_y(C, D) \pi(C(y))$, then

$$|D(x)| = \sum_{y \in C(x)} |C(y) \cap D(y)|.$$

In fact, $|C(y) \cap D(y)| \geq |C(x)|$, so we have

$$|D(x)| \geq |C(x)|.$$

If $\pi(C(x)) = \sum_{y \in D(x)} \text{cov}_y(C, D) \pi(D(y))$ then

$$|C(x)| = \sum_{y \in D(x)} |C(y) \cap D(y)|.$$

In fact, $|C(y) \cap D(y)| \geq |D(x)|$, so we have

$$|C(x)| \geq |D(x)|.$$

Thus, we get

$$|C(x)| = |D(x)|.$$

If $\pi(D(x)) = \sum_{y \in C(x)} \text{cer}_y(C, D) \pi(C(y))$, then by Lemma 1,

$$\pi(D(x)) = \pi(C(x)) \sum_{y \in C(x)} \text{cer}_y(C, D)$$

i.e.

$$|D(x)| = |C(x)| \sum_{y \in C(x)} \text{cer}_y(C, D).$$

Thus, we get

$$\sum_{y \in C(x)} \text{cer}_y(C, D) = 1.$$

Similarly, we have

$$\sum_{y \in D(x)} \text{cov}_y(C, D) = 1.$$

Similarly, we have

Lemma 3: Let $x \in U$ and $C \rightarrow_x D$ be a decision rule, if two of the following conditions hold, then other holds.

(1). $\pi(D(x)) = \sum_{y \in C(x)} \text{cer}_y(C, D) \pi(C(y))$.

(2). $\sum_{y \in C(x)} \text{cer}_y(C, D) = 1$.

(3). $|C(x)| = |D(x)|$.

Proof: The sufficiency can be obtained by Lemma 2 and Lemma 3.

We prove the necessity as follows.

If $\pi(D(x)) = \sum_{y \in C(x)} \text{cer}_y(C, D) \pi(C(y))$, then

$$|D(x)| = \sum_{y \in C(x)} |C(y) \cap D(x)|.$$

Since

$$\sum_{y \in C(x)} |C(y) \cap D(x)| \geq |C(x)|,$$

we have

$$|D(x)| \geq |C(x)|.$$

If $\pi(C(x)) = \sum_{y \in D(x)} \text{cov}_y(C, D) \pi(D(y))$, then

$$|C(x)| = \sum_{y \in D(x)} |C(x) \cap D(y)|.$$

Since

$$\sum_{y \in D(x)} |C(x) \cap D(y)| \geq |D(x)|,$$

we have

$$|C(x)| \geq |D(x)|.$$

Thus, we have

$$|C(x)| = |D(x)|.$$

If $\pi(D(x)) = \sum_{y \in C(x)} \text{cer}_y(C, D) \pi(C(y))$, then by Lemma 1(1),

$$\pi(D(x)) = \pi(C(x)) \sum_{y \in C(x)} \text{cer}_y(C, D),$$

by definition, we have

$$|D(x)| = |C(x)| \sum_{y \in C(x)} \text{cer}_y(C, D).$$
Hence
\[
\sum_{y \in C(x)} cer_y(C, D) = 1.
\]
Similarly, we have
\[
\sum_{y \in D(x)} cov_y(C, D) = 1.
\]

REFERENCES

Songlin Yang received the Ph.D. degree in School of Mathematical Science, Soochow University, in 2005. His research interests include Data mining, computation geometry and differential geometry.

Ying Ge received his MS degree in Soochow University, P. R. China. He is a Professor at Soochow University. His research interests includes data mining and knowledge discovery, topology.