Surface Roughness Optimization in End Milling Operation with Damper Inserted End Milling Cutters

Krishna Mohana Rao, G. Ravi Kumar, and P. Sowmya

Abstract—This paper presents a study of the Taguchi design application to optimize surface quality in damper inserted end milling operation. Maintaining good surface quality usually involves additional manufacturing cost or loss of productivity. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various factors, using fewer resources than a factorial design. This Study included spindle speed, feed rate, and depth of cut as control factors, usage of different tools in the same specification, which introduced tool condition and dimensional variability. An orthogonal array of L9(3^4)was used; ANOVA analyses were carried out to identify the significant factors affecting surface roughness, and the optimal cutting combination was determined by seeking the best surface roughness (response) and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing milling parameters for surface roughness.

Keywords—ANOVA, Damper, End Milling, Optimization, Surface roughness, Taguchi design.

I. INTRODUCTION

MILLING process is having wider application, but the vibration during the process affects the performance. The key benefit of high speed milling is that a large amount of material can be cut in a short time span with a relatively small tool due to high rotational speed of the tool. This results in a relatively low force, which allows one to mill large and complex thin walled structures from a single block of material, instead of assembling the same structure from several parts. Since the effective use of a milling process also accompanied with vibrations, a mechanism is to think of which can reduce the amount of vibration of tool and its influence on the machining performance. Particularly, in case of end milling cutter the lateral vibration of the tool effects the surface roughness of the component. In the present work an attempt is made to find the influence of insertion of damper (finger) into the tool longitudinally.

II. LITERATURE REVIEW

Research on structural damping has given a great knowledge in understanding the behaviour of a tool. They investigated this problem and proposed devices to provide damping to the structures. Some of them used tuned mass dampers, liquid dampers, friction dampers, and impact dampers.

Cobb [1] found that impact dampers served better in controlling the vibrations. The types of impact dampers used were a spring/mass liquid impact damper and a tapered impact damper. Keyvanmanesh, Amir [2] developed an algorithm to detect the chatter region based on the information obtained from the cutting tests on different end mills. Similar to the work done by Smith, Kevin Scott, [3], he did a time domain simulation using the values obtained from the dynamic response of the tool to plot the stability lobes. Cook, R. A., Bloomquist, D., Richard, D. S., and Kalajian, M.A [4] developed damping mechanisms to control vibrations on traffic signal structures. They proposed devices to provide damping to the structures.

The research damper model was based on the work done by Slocum, H. Alexander [5] on damping bending in beams. J. Tlusty, K.S. Smith, W. Winfough [6] studied two techniques using end mills in high-speed milling. In the first method, the top speed and power of the spindle are accepted as fixed, and the structural dynamics are manipulated by adjusting the tool length so as to take the advantage of stability lobe effects. Proportional Derivative fuzzy logic controller is designed and implemented by E. Soliman, F. Ismail [7] to suppress chatter in peripheral milling. E.G. Kubica, F. Ismail [8] proposed the maximum quantity of material that can be removed by the milling operation which is often limited by the stability of the cutting process, and not by the power available on the machine.

Devor, R. E., and Kapoor, S. G. [13] have demonstrated the technique of spindle speed modulation to be very effective in suppressing chatter in milling at regular cutting speeds. Ralston, P.A. & Ward, T.L. [14] proposed the use of spindle speed modulation by adjusting the parameters on-line via feedback control. It was found that the fuzzy logic control approach was well suited for the current investigation. J.Y. Zhu, A.A. Shumsheruddin and J.G. Bollinger [15] developed a fuzzy logic control to control the surface finish by adjusting the feed rate in plunge grinding. K. Nagaya, J. Kobayasi, K. Imai [16] gave a method of micro-vibration control of milling machine heads by use of vibration absorber. An auto-tuning vibration absorber is presented in which the absorber creates anti-resonance state. A method of optimal auto-tuning control is presented in which both principal and higher modal vibrations are suppressed.

J.C. Ziegert, C. Stanislaus, T. Schmitz, R. Sterling [17] found that the limiting chatter-free depth of cut in milling is dependent on dynamic stiffness of the tool or spindle system. A method for increasing the dynamic stiffness by providing additional damping is demonstrated. N.H. Kim, K.K. Choi, J.S. Chen, Y.H. Park [18] proposed a continuum-based shape design sensitivity formulation for a frictional contact problem with a rigid body using mesh less method.

T. Schmitz, J.C. Ziegert, C. Stanislaus [19] Charles Stanislaus predicted that the stable cutting regions are a critical requirement for high-speed milling operations. Sridhar, R., Hohn, R. E., and Long, G. W. [20] presented the first detailed mathematical model with time varying cutting force coefficients. E. Budak, Y. Altintas [21] derived the finite order characteristic equation for the stability analysis in milling. M.Alaudin, M.A.El Baradie, M.S.J.Hashmi [22] has revealed that when the cutting speed is increased, productivity can be maximized, and surface quality can be improved. According to M. Hasegawa, A. Seireg, R.A. Lindberg [23] surface finish can be characterized by various parameters such as average roughness (Ra), smoothing depth (Rp), root mean square (Rq), and maximum peak-to-valley height (Rt).

EI-Baradie [24] and B.P. Bandyopadhyay and E.H. Teo [25] have shown that by increasing cutting speed, the productivity can be maximized, and the surface quality can be improved simultaneously. According to Gorlenko [26] and Thomas [27], surface finish can be characterized by various parameters. Krishna Mohana Rao, P.Ravi Kumar [28] experimentally analyzed the influence of cutting parameters on the roughness of the surface produced.

In the present paper an attempt is made to study the roughness of the surface produced on the aluminium work piece with end milling cutters with three different dampers inserted.

III. EXPERIMENTAL SETUP

A. Cutting Tools

To experimentally test the performance of the damper insert, two end mills are designed. The tool is made of high-speed steel with 19.05mm outer diameter, 125mm length, and has 3 cutting flutes. The tools had an internal blind hole of 9.5mm diameter with a length of 105 mm. Testing was performed on the solid and hollow end mills, and later the dampers were inserted into the hollow tool, and the tests were repeated. The damper insert had fingers and was constructed from a 9.5 mm diameter tungsten carbide blank.

As shown in fig. 1 to 3 tools with one, two, three dampers is chosen, so that different interactions between independent variables could be effectively investigated. The diameter of the damper insert was such that the solid portion provided a light press fit into the tool body.

Fig. 1 Hollow milling cutter with one and two dampers

Fig. 2 Hollow milling cutter with one and two dampers

Fig. 3 Hollow milling cutters with three dampers
B. Machining Conditions and Experimental Design

The independent variables in the study are cutting speed, feed rate, depth of cut and the number of dampers or fingers. The last variable is introduced into the experiment since the vibrations generated by varying the number of dampers could affect the resulting surface finish since the natural frequencies are expected to be modified. The dependent variable is the resulting first cut surface finish. An L₉ (3⁴) Taguchi orthogonal array was used as the experimental design. The levels of parameters investigated are given in Table I.

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVELS OF MACHINING PARAMETERS</td>
</tr>
<tr>
<td>Factors(4) Levels(3)</td>
</tr>
<tr>
<td>Speed (rpm)</td>
</tr>
<tr>
<td>Type of tool</td>
</tr>
<tr>
<td>Feed (mm/rev)</td>
</tr>
<tr>
<td>Depth of cut (mm)</td>
</tr>
</tbody>
</table>

C. Workpiece Materials and Cutting

Aluminium of 50mm X 15mm was used as a workpiece material. The milling experiments were carried out on a vertical milling machine equipped with a maximum spindle speed of 985 rpm. The milling process was interrupted after every experiment. This basic design makes use of up to four control factors, with three levels each.

IV. UNITS

A. Regression Analysis

The surface roughness values Rₐ is measured on surf test SJ 301 and values are given in Table II. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting tools were obtained from regression analysis using MINITAB 14 statistical software to predict Surface Roughness. The following notation is used in mathematical models:

\[\eta = -10 \log \left(\frac{1}{n} \sum \sigma_i \right) \]

where \(n \) is number of measurements in a trial/row and \(\sigma_i \) is the \(i \)th measured value in a run/row. The S/N ratio values calculated by taking equation (1) into consideration and are listed in Table II.

Figures 4 and 5 show the variation of surface roughness with speed and type of tool. Figure 6 showed the main effects plot for S/N ratios. The level of a factor with the highest S/N ratio was the optimum level for responses measured. The results of ANOVA are summarised in Table III. Table IV gives the optimised conditions of machining.

<table>
<thead>
<tr>
<th>TABLE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIMENTAL RESULTS FOR DIFFERENT DAMPERS</td>
</tr>
<tr>
<td>run</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
Fig. 4 Variation of Surface roughness with speed

TABLE III

<table>
<thead>
<tr>
<th>COL#/Factor</th>
<th>DOF</th>
<th>SUM OF SQUARES (S)</th>
<th>VARIANCE(V)</th>
<th>Pure sum(S')</th>
<th>Percent P(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEED</td>
<td>2</td>
<td>45.582</td>
<td>22.791</td>
<td>45.582</td>
<td>60.943</td>
</tr>
<tr>
<td>FEED</td>
<td>2</td>
<td>7.519</td>
<td>3.759</td>
<td>7.519</td>
<td>10.052</td>
</tr>
<tr>
<td>DOC</td>
<td>2</td>
<td>0.689</td>
<td>0.344</td>
<td>0.689</td>
<td>0.921</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>COL#/Factor</th>
<th>DOF</th>
<th>SUM OF SQUARES (S)</th>
<th>VARIANCE(V)</th>
<th>Pure sum(S')</th>
<th>Percent P(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEED</td>
<td>2</td>
<td>45.582</td>
<td>22.791</td>
<td>45.582</td>
<td>60.943</td>
</tr>
<tr>
<td>FEED</td>
<td>2</td>
<td>7.519</td>
<td>3.759</td>
<td>7.519</td>
<td>10.052</td>
</tr>
<tr>
<td>DOC</td>
<td>2</td>
<td>0.689</td>
<td>0.344</td>
<td>0.689</td>
<td>0.921</td>
</tr>
</tbody>
</table>

Predicted Optimal S/N value from ANOVA = 5.024
Predicted Surface roughness value Corresponding to S/N = 5.024 is 0.56
Experimental surface roughness value = 0.7

Fig. 5 3-D graph showing variation of surface roughness with speed and type of tool

Fig. 6 S/N ratios for surface roughness

V. CONCLUSION

The experimental results indicate that in this study the effects of spindle speed and type of tool on surface were larger than depth of cut and feed for milling operation.

The surface finish achievement of the confirmation runs under the optimal cutting parameters indicated that of the parameter settings used in this study, those identified as optimal through Taguchi parameter design were able to produce the best surface roughness in this milling operation.

The optimal levels for the controllable factors were spindle speed 960 rpm, feed rate 29 mm/rev, depth of cut 0.5 mm for hollow milling cutter with 2 dampers.

Compared with the experiment results, the optimal surface roughness of the 9 confirmation samples 0.7 µm. which was very close to the smallest value optimal value of surface roughness 0.56 µm by ANOVA.

REFERENCES

