Ant Colony Optimization for Feature Subset Selection

Ahmed Al-Ani

Abstract—The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It has recently attracted a lot of attention and has been successfully applied to a number of different optimization problems. Due to the importance of the feature selection problem and the potential of ACO, this paper presents a novel method that utilizes the ACO algorithm to implement a feature subset search procedure. Initial results obtained using the classification of speech segments are very promising.

Keywords—Ant Colony Optimization, ant systems, feature selection, pattern recognition.

I. INTRODUCTION

The problem of feature selection has been widely investigating due to its importance to a number of disciplines such as pattern recognition and knowledge discovery. Feature selection allows the reduction of feature space, which is crucial in reducing the training time and improving the prediction accuracy. This is achieved by removing irrelevant, redundant, and noisy features (i.e., selecting the subset of features that can achieve the best performance in terms of accuracy and computational time).

As described in their paper, Blum and Langley [1] argued that most existing feature selection algorithms consist of the following four components:

- **Starting point in the feature space.** The search for feature subsets could start with (i) no features, (ii) all features, or (iii) random subset of features.
- **Search procedure.** Ideally, the best subset of features can be found by evaluating all the possible subsets, which is known as exhaustive search. However, this becomes prohibitive as the number of features increases, where there are \(2^N\) possible combinations for \(N\) features. Accordingly, several search procedures have been developed that are more practical to implement, but they are not guaranteed to find the optimal subset of features. These search procedures differ in their computational cost and the optimality of the subsets they find.
- **Evaluation function.** The existing feature selection evaluation functions can be divided into two main groups: filters and wrappers. Filters operate independently of any learning algorithm, where undesirable features are filtered out of the data before learning begins [2]. On the other hand, performance of classification algorithms is used to select features for wrapper methods [3].

- **Criterion for stopping the search.** Feature selection methods must decide when to stop searching through the space of feature subsets. Some of the methods ask the user to predefine the number of selected features. Other methods are based on the evaluation function, like whether addition/deletion of any feature does not produce a better subset.

In this paper, we will mainly be concerned with the second component, which is the search procedure. In the next section, we give a brief description of some of the available search procedure algorithms and their limitations. An explanation of the Ant Colony Optimization (ACO) is presented in section three. Section four describes the proposed search procedure algorithm. Experimental results are presented in section five and a conclusion is given in section six.

II. THE AVAILABLE SEARCH PROCEDURES

A number of search procedure methods have been proposed in the literature. Some of the most famous ones are the stepwise, branch-and-bound, and Genetic Algorithms (GA).

The stepwise search adds/removes a single feature to/from the current subset [4]. It considers local changes to the current feature subset. Often, a local change is simply the addition or deletion of a single feature from the subset. The stepwise, which is also called the Sequential Forward Selection (SFS)/Sequential Backward Selection (SBS) is probably the simplest search procedure and is generally sub-optimal and suffers from the so-called “nesting effect”. It means that the features that were once selected/deleted cannot be later discarded/re-selected. To overcome this problem, Pudil et al. [5] proposed a method to flexibly add and remove features, which they called “floating search”.

The branch and bound algorithm [6] requires monotonic evaluation functions and is based on discarding subsets that do not meet a specified bound. When the size of feature set is moderate, the branch and bound algorithm may find a practicable solution. However, this method becomes impracticable for feature selection problems involving a large number of features, especially because it may need to search the entire feasible region to find the optimal solution.

Another search procedure is based on the Genetic Algorithm (GA), which is a combinatorial search technique.
based on both random and probabilistic measures. Subsets of features are evaluated using a fitness function and then combined via cross-over and mutation operators to produce the next generation of subsets [7]. The GA employ a population of competing solutions, evolved over time, to converge to an optimal solution. Effectively, the solution space is searched in parallel, which helps in avoiding local optima.

A GA-based feature selection solution would typically be a fixed length binary string representing a feature subset, where the value of each position in the string represents the presence or absence of a particular feature. Promising results were achieved when comparing the performance of GA with other conventional methods [8]. We propose in this paper a subset search procedure that utilizes the ACO algorithm and aims at achieving similar or better results than GA-based feature selection.

III. ANT COLONY OPTIMIZATION

In real ant colonies, a pheromone, which is an odorous substance, is used as an indirect communication medium. When a source of food is found, ants lay some pheromone to mark the path. The quantity of the laid pheromone depends upon the distance, quantity and quality of the food source. While an isolated ant that moves at random detects a laid pheromone, it is very likely that it will decide to follow its path. This ant will itself lay a certain amount of pheromone, and hence enforce the pheromone trail of that specific path. Accordingly, the path that has been used by more ants will be more attractive to follow. In other words, the probability with which an ant chooses a path increases with the number of ants that previously chose the same path. This process is hence characterized by a positive feedback loop [9].

Dorigo et. al. [10] adopted this concept and proposed an artificial colony of ants algorithm, which was called the Ant Colony Optimization (ACO) metaheuristic, to solve hard combinatorial optimization problems. The ACO was originally applied to solve the classical traveling salesman problem [9], where it was shown to be an effective tool in finding good solutions. The ACO has also been successfully applied to other optimization problems including telecommunications networks, data mining, vehicle routing, etc [11, 12, 13]

For the classical Traveling Salesman Problem (TSP) [9], each artificial ant represents a simple “agent”. Each agent explores the surrounding space and builds a partial solution based on local heuristics, i.e., distances to neighboring cities, and on information from previous attempts of other agents, i.e., pheromone trail or the usage of paths from previous attempts of the rest of the agents. In the first iteration, solutions of the various agents are only based on local heuristics. At the end of the iteration, “artificial pheromone” will be laid. The pheromone intensity on the various paths will be proportional to the optimality of the solutions. As the number of iterations increases, the pheromone trail will have a greater effect on the agents' solutions.

It is worth mentioning that ACO makes probabilistic decision in terms of the artificial pheromone trails and the local heuristic information. This allows ACO to explore larger number of solutions than greedy heuristics. Another characteristic of the ACO algorithm is the pheromone trail evaporation, which is a process that leads to decreasing the pheromone trail intensity over time. According to [10], pheromone evaporation helps in avoiding rapid convergence of the algorithm towards a sub-optimal region.

In the next section, we present our proposed ACO algorithm, and explain how it is used for searching the feature space and selecting an “appropriate” subset of features.

IV. THE PROPOSED SEARCH PROCEDURE

For a given classification task, the problem of feature selection can be stated as follows: given the original set, \(\mathcal{F} \), of \(n \) features, find subset \(\mathcal{S} \), which consists of m features (\(m < n \), \(\mathcal{S} \subset \mathcal{F} \)), such that the classification accuracy is maximized.

The feature selection problem representation exploited by the artificial ants includes the following:
- \(n \) features that constitute the original set, \(\mathcal{F} = \{ f_1, \ldots, f_n \} \).
- A number of artificial ants to search through the feature space (\(nu \) ants).
- \(i_t \), the intensity of pheromone trail associated with feature \(f_i \).
- For each ant \(j \), a list that contains the selected feature subset, \(\mathcal{S}_j = \{ s_1, \ldots, s_m \} \).

We propose to use a hybrid evaluation measure that is able to estimate the overall performance of subsets as well as the local importance of features. A classification algorithm is used to estimate the performance of subsets (i.e., wrapper evaluation function). On the other hand, the local importance of a given feature is measured using the Mutual Information Evaluation Function (MIEF) [14], which is a filter evaluation function.

In the first iteration, each ant will randomly choose a feature subset of \(m \) features. Only the best \(k \) subsets, \(k < na \), will be used to update the pheromone trial and influence the feature subsets of the next iteration. In the second and following iterations, each ant will start with \(m - p \) features that are randomly chosen from the previously selected \(k \)-best subsets, where \(p \) is an integer that ranges between 1 and \(m - 1 \). In this way, the features that constitute the best \(k \) subsets will have more chance to be present in the subsets of the next iteration. However, it will still be possible for each ant to consider other features as well. For a given ant \(j \), those features are the ones that achieve the best compromise between previous knowledge, i.e., pheromone trails, and Local Importance with respect to subset \(\mathcal{S}_j \), which consists of the features that have already been selected by that specific ant. The Updated Selection Measure (USM) is used for this purpose and defined as:

USM^j_i = \begin{cases}
\frac{\left(\prod_{i \in S_j}^D Li^j_i \right)^{\eta}}{\sum_{s \in S_j^j}^D Li^j_i} & \text{if } i \notin S_j \\
0 & \text{Otherwise}
\end{cases}
\quad (1)

where \(Li^j_i \) is the local importance of feature \(f_i \) given the subset \(S_j \). The parameters \(\eta \) and \(\kappa \) control the effect of trait intensity and local feature importance respectively. \(Li^j_i \) is defined as:

\[Li^j_i = I(C; f_i) \times \frac{2}{1 + \exp(-\alpha D^j_i)} - 1 \]
\quad (2)

where

\[D^j_i = \min_{f_{i},f_{j}} \left[\frac{H(f_{i}) - I(f_{i},f_{j})}{H(f_{i})} \right] \times \left[\frac{1}{S_j} \sum_{f_{j} \in S_j} \beta \left(I(C; f_{i},f_{j}) \right) / I(C; f_{i}) + I(C; f_{j}) \right]^\gamma \]
\quad (3)

the parameters \(\alpha, \beta, \gamma \) and \(\gamma \) are constants, \(H(f_{i}) \) is the entropy of \(f_{i} \), \(I(f_{i},f_{j}) \) is the mutual information between \(f_{i} \) and \(f_{j} \), \(I(C; f_{i}) \) is the mutual information between the class labels and \(f_{i} \), and \(|S_j| \) is the cardinal of \(S_j \). For detailed explanation of the MIEF measure, the reader is referred to [14].

Below are the steps of the algorithm:

1. **Initialization:**
 - Set \(T_i = cc \) and \(\Delta T_i = 0 \), \((i = 1, \ldots, n) \), where \(cc \) is a constant and \(\Delta T_i \) is the amount of change of pheromone trial quantity for feature \(f_i \).
 - Define the maximum number of iterations.
 - Define \(k \), where the \(k \)-best subsets will influence the subsets of the next iteration.
 - Define \(p \), where \(m - p \) is the number of features each ant will start with in the second and following iterations.

2. **If in the first iteration:**
 - For \(j = 1 \) to \(na \),
 - Randomly assign a subset of \(m \) features to \(S_j \).
 - Goto step 4.

3. **Select the remaining \(p \) features for each ant:**
 - For \(mm = m - p + 1 \) to \(m \),
 - For \(j = 1 \) to \(na \),
 - Given subset \(S_j \), choose feature \(f_i \) that maximizes \(USM^j_i \).
 - \(S_j = S_j \cup \{ f_i \} \).
 - Replace the duplicated subsets, if any, with randomly chosen subsets.

4. **Evaluate the selected subset of each ant using a chosen classification algorithm:**
 - For \(j = 1 \) to \(na \),
 - Estimate the Mean Square Error (MSE) of the classification results obtained by classifying the features of \(S_j \).
 - Sort the subsets according to their MSE. Update the minimum MSE (if achieved by any ant), and store the corresponding subset of features.

5. **Using the feature subsets of the best \(k \) ant:**
 - For \(j = 1 \) to \(m \) \/* update the pheromone trails */
 - \(\Delta T_j = \max_{g \in S_j} \left(\frac{\max_{b \in S_j} \left(\frac{MSE_b - MSE_g}{MSE_b} \right)}{\sum_{g \in S_j}^D Li^j_i} \right) \) if \(f_i \in S_j \)
 - Otherwise
 - \(T_j = T_j + \Delta T_j \)

 where \(\rho \) is a constant such that \((1 - \rho) \) represents the evaporation of pheromone trails.
 - For \(j = 1 \) to \(na \),
 - Randomly produce \(m - p \) feature subset for ant \(j \), to be used in the next iteration, and store it in \(S_j \).

6. **If the number of iterations is less than the maximum number of iterations, goto step 3.**

It is worth mentioning that there is little difference between the computational cost of the proposed algorithm and the GA-based search procedure. This is due to the fact that both of them evaluate the selected subsets using a “wrapper approach,” which requires far more computational cost than evaluating the local importance of features using the “filter approach” adopted in the proposed algorithm.

V. EXPERIMENTAL RESULTS

We conducted an experiment to classify speech segments according to their manner of articulation. Six classes were considered: vowel, nasal, fricative, stop, glide, and silence. We used speech signals from the TIMIT database, where segment boundaries were identified.

Three different sets of features were extracted from each speech frame: 16 log mel-filter bank (MFB), 12 linear predictive reflection coefficients (LPR), and 10 wavelet energy bands (WVT). A context dependent approach was adopted to perform the classification. So, the features used to represent each speech segment \(Seg_{n} \) were the average frame features over the first and second halves of segment \(Seg_{n} \) and the average frame features of the previous and following segments \(Seg_{n-1} \) and \(Seg_{n+1} \), respectively. Hence, the baseline feature sets based on MFB, LPR, and WVT consist of 64, 48 and 40 features respectively.

An Artificial Neural Network (ANN) was used to classify the features of each baseline set into one of the six manner-of-articulation classes. Segments from 152 speakers (56456 segments) were used to train the ANNs, and from 52 speakers (19228 segments) to test them. The obtained classification accuracy for MFB, LPR and WVT were 87.13%, 76.86% and 84.57% respectively. It is clear that MFB achieved the best accuracy for MFB, LPR and WVT were 87.13%, 76.86% and 84.57% respectively.
one feature at a time, such that the MIEF measure (Eq. 2) is maximized. The GA-based selection is performed using the following parameter settings: population size = 30, number of generations = 20, probability of crossover = 0.8, and probability of mutation = 0.05. The obtained strings are constrained to have the number of ‘1’s matching a predefined number of desired features. The MSE of an ANN trained with randomly chosen 2000 segments is used as the fitness function. The parameters of the ACO algorithms described in the previous section are assigned the following values:

- $\eta = \kappa = 1$, which basically makes the trail intensity and local measure equally important.
- $\alpha = 0.3$, $\beta = 1.65$ and $\gamma = 3$, are found to be an appropriate choice for this and other classification tasks.
- The number of ants, $na = 30$, and the maximum number of iterations is 20, are chosen to justify the comparison with GA.
- $k = 10$. Thus, only the best $na/3$ ants are used to update the pheromone trails and affect the feature subsets of the next iteration.
- $m - p = \max(m - 5, \text{round}(0.65 \times m))$, where p is the number of the remaining features that need to be selected in each iteration. It can be seen that p will be equal to 5 if $m \geq 13$. The rational behind this is that evaluating the importance of features locally becomes less reliable as the number of selected features increases. In addition, this will reduce the computational cost especially for large values of m.
- The initial value of trail intensity $cc = 1$, and the trail evaporation is 0.25, i.e., $\rho = 0.75$.
- Similar to the GA selection, the MSE of an ANN trained with randomly chosen 2000 segments is used to evaluate the performance of the selected subsets in each iteration. The selected features of each method are classified using ANNs, and the obtained classification accuracies of the testing segments are shown in Fig. 1.

It can be seen that the three feature selection methods were able to achieve classification accuracy similar to that of LPR with far less number of features than that of the LPR baseline set. However, the ACO was the only method that achieved similar performance as WVT with smaller number of features. Both ACO and GA achieved comparable performance to MFB using similar number of features, with GA being slightly better. Note that SFS achieved a good performance when selecting small number of features, but its performance start to worsen as the desired number of features increases. The figure also shows that the overall performance of ACO is better than that of both GA and SFS, where the average classification accuracy of ACO, GA and SFS over all the cases are: 84.22%, 83.49% and 83.19% respectively.

VI. CONCLUSION

In this paper, we presented a novel feature selection search procedure based on the Ant Colony Optimization metaheuristic. The proposed algorithm utilizes both the local importance of features and overall performance of subsets to search through the feature space for optimal solutions. When used to select features for a speech segment classification problem, the proposed algorithm outperformed both stepwise- and GA-based feature selection methods. Experiments on other classification problems will be carried out in the future to further test the algorithm.

REFERENCES