Group of p-th roots of unity modulo n

Rochdi Omami, Mohamed Omami and Raouf Ouni

Abstract—Let \(n \geq 3 \) be an integer and \(p \) be a prime odd number. Let us consider \(G_p(n) \) the subgroup of \((\mathbb{Z}/n\mathbb{Z})^* \) defined by:

\[
G_p(n) = \{ x \in (\mathbb{Z}/n\mathbb{Z})^* \mid x^p = 1 \}.
\]

In this paper, we give an algorithm that computes a generating set of this subgroup.

Keywords—Group, p-th roots, modulo, unity.

I. INTRODUCTION

Let \(n \geq 3 \) be an integer, recall that \((\mathbb{Z}/n\mathbb{Z})^* \) denotes the group of units of the ring \((\mathbb{Z}/n\mathbb{Z}) \). For more details on the structure of \((\mathbb{Z}/n\mathbb{Z})^*\) see [2], [3] and [4]. The group \((\mathbb{Z}/n\mathbb{Z})^*\) has several applications, the most important is cryptography, that is RSA cryptosystem (see [7]). The security of the RSA cryptosystem is based on the problem of factoring large integers and the task of finding \(e \)-th roots modulo a composite number \(n \) whose factors are not known.

Let \(p \) be a prime odd number, we notice by \(G_p(n) \) the part of \((\mathbb{Z}/n\mathbb{Z})^*\) formed by the elements \(x \) that verify \(x^p = 1 \). We can easily prove that \(G_p(n) \) is a subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\) which contains exactly the unity and the elements of order \(p \).

Remember also that these elements of order \(p \) in \((\mathbb{Z}/n\mathbb{Z})^*\) exist if and only if \(p \) divides \(\lambda(n) \), with \(\lambda \) is the Carmichael lambda function, otherwise \(G_p(n) \) is not reduced to \(\{1\} \) if and only if \(p \) divides \(\lambda(n) \).

The elements of \(G_p(n) \) other than 1 have the order \(p \) and so the order of \(G_p(n) \) is of the form \(p^t \) with \(t \) an integer. Then we obtain the following result:

Proposition :
Let \(n \geq 3 \) be an integer and \(p \) be a prime number, then there exists an integer \(t \) such as :

\[
\text{Card}(G_p(n)) = p^t
\]

with \(t = 0 \) if and only if \(p \) does not divide \(\lambda(n) \).

II. P-TH ROOTS OF UNITY MODULO N

Let us consider an integer \(n \geq 3 \) and \(p \) a prime odd number, let \(n = p^m_1 p_1^{n_1} p_2^{n_2} \ldots p_m^{n_m} \) the decomposition of \(n \) in prime factors.

We know that the p-th roots of unity modulo \(n \), which are nontrivial, exist if and only if \(p \) divides \(\lambda(n) \), that is to say \(\alpha \geq 2 \) or there exists \(i \) such as \(p \) divides \(p_i - 1 \).

Thus, in our study, we will distinguish these following cases \(\alpha = 0, \alpha = 1 \) and \(\alpha \geq 2 \), but before that we are going to give some results which will be useful thereafter.

Definition 2.1: Let \(n \geq 3 \) be an integer and \(p \) be a prime number, we denote \(\alpha_p(n) \) the number of prime factors \(q \) of \(n \) such that \(p \) divides \(q - 1 \).

Remark :
• \(\alpha_p(n) \) is the number of prime odd factors of \(n \).
• The function \(\alpha_p \) is additive, that is to say if \(n \) and \(m \) are coprime numbers, then

\[
\alpha_p(m.n) = \alpha_p(m) + \alpha_p(n)
\]

and generally, for all the numbers not equal to 0, \(n \) and \(m \) we have:

\[
\alpha_p(m.n) = \alpha_p(m) + \alpha_p(n) - \alpha_p(GCD(m,n)).
\]

In the following, we consider an integer \(n \geq 3 \) whose the factorization is \(n = p^m_1 p_1^{n_1} p_2^{n_2} \ldots p_m^{n_m} \), with \(p \) a prime odd number dividing \(\lambda(n) \).

Proposition 2.1: Let \(x \) be a \(p \)-th root of unity modulo \(n \).
If \(p \) does not divide \(p_i - 1 \), then \(p_i \) divides \(x - 1 \).

Proof :
We have \(x^p \equiv 1[n] \Longrightarrow x^p \equiv 1[p_i] \) and thus the order of \(x \) in \((\mathbb{Z}/p_i\mathbb{Z})^*\) is 1 or \(p \), but the order of \(x \) in \((\mathbb{Z}/p_i\mathbb{Z})^*\) divides \(p_i - 1 \) and thus it cannot be \(p \). Therefore \(x \equiv 1[p_i] \) and then we obtain the result.

Now, we will ameliorate the precedent result with the following lemma :

Lemma 2.1:

\[
GCD(x - 1, 1 + x + x^2 + \ldots + x^{p-1}) \in \{1, p\}
\]

Proof :
One can easily verify that we have:

\[
(x - 1)(x^{p-2} + 2x^{p-3} + 3x^{p-4} + \ldots + (p - 2)x + (p - 1)) - (1 + x + x^2 + \ldots + x^{p-1}) = p.
\]
Corollary 2.1: Let \(x \) be a \(p \)-th root of unity modulo \(n \). If \(p \) does not divide \(p_1 - 1 \) and \(p \neq p_1 \), then \(p_1^{n_1} \) divides \(x - 1 \).

Proof: We have \(x^p \equiv 1 \mod{n} \) \(\Rightarrow \) \(x^p \equiv 1 \mod{\varphi(n)} \) then \(p_1^\alpha \) divides \(x^p - 1 = (x - 1)(1 + x + x^2 + \ldots + x^{p-1}) \), or \(p \) does not divide \(p_1 - 1 \) and thus \(p_1 \) divides \(x - 1 \). Also we know that the \(\text{PGCD}(x - 1, 1 + x + x^2 + \ldots + x^{p-1}) \in \{1, p\} \) and \(p \neq p_1 \), then \(p_1^{n_1} \) divides \(x - 1 \).

If \(p \) divides \(n \), that is to say \(\alpha \geq 1 \), and \(x \) is a \(p \)-th root of unity modulo \(n \), then \(p \) divides \(x^p - 1 = (x - 1)(1 + x + x^2 + \ldots + x^{p-1}) \) and consequently \(p \) divides \(x - 1 \) or \(1 + x + x^2 + \ldots + x^{p-1} \) and seeing the relation given in the proof of Lemma 2.1 we conclude that \(p \) divides both at the same time, and thus \(\text{PGCD}(x - 1, 1 + x + x^2 + \ldots + x^{p-1}) = p \).

We are interested now in the case of \(\alpha \geq 2 \), we saw in [1] for \(p = 2 \) that \(2^\alpha - 1 \) divides \(x - 1 \) or \(x + 1 \), we are going to see that this result is not true for an odd prime \(p \) and more precisely we have the following result:

Proposition 2.2: Let \(x \) be a \(p \)-th root of unity modulo \(n \) \((\alpha \geq 2)\), then \(p^{\alpha-1} \) divides \(x - 1 \).

The case \(\alpha = 2 \) is trivial, for \(\alpha \geq 3 \), one needs the following lemma:

Lemma 2.2: Let \(p \) be a prime odd number and \(x \) be an integer, then we have:

\[
x^p \equiv 1 \mod{p^3} \Rightarrow x \equiv 1 \mod{p^2}
\]

Proof: It is clear that \(x^p \equiv 1 \mod{p^3} \Rightarrow x \equiv 1 \mod{p} \), so \(x = 1 + kp \) \((k \in \mathbb{N})\) and consequently \(x^p \equiv 1 \mod{p^3} \). (This writing is possible because \(p \geq 3 \)) moreover \(p^2 \) divides \(p^k \), then \(p \) divides \(k \) and finally we obtain: \(x \equiv 1 \mod{p^3} \).

Remark: Notice that the precedent lemma is not true for \(p = 2 \), for instance \(3^2 \equiv 1 \mod{8} \) and \(3 \equiv 1 \mod{4} \).

Proof of Proposition 2.2:

We have \(x^p \equiv 1 \mod{p^\alpha} \) \((\alpha \geq 3)\) and so in particular \(x^p \equiv 1 \mod{p^3} \), from the precedent lemma we conclude that \(x \equiv 1 \mod{p^3} \).

We have \(p^\alpha \) divides \(x^p - 1 = (x - 1)(1 + x + x^2 + \ldots + x^{p-1}) \) and as \(\text{PGCD}(x - 1, 1 + x + x^2 + \ldots + x^{p-1}) = p \) besides \(p^2 \) divides \(x - 1 \), so \(p^{\alpha-1} \) divides \(x - 1 \).

Remark: The precedent proposition shows that \(p^{\alpha-1} \) divides \(x - 1 \), but this does not mean that the \(p \)-adic valuation of \(x - 1 \) is \(\alpha - 1 \) and this is proved by the following examples.

An application example:

- \(n = 7^3 \times 29 = 9947 \), we have \(344^7 \equiv 1 \mod{n} \) and \(344 \equiv 1 \mod{7^3} \). \(2402^7 \equiv 1 \mod{n} \) and \(2402 \equiv 1 \mod{7^4} \).

- \(n = 7^2 \times 29 \times 43 \times 71 = 4338313 \), we have \(350547^7 \equiv 1 \mod{n} \) and \(350547 \equiv 1 \mod{7^4} \).

Let us return to our principal aim, which is the study of the group \(G_p(n) \), we begin by the case \(\alpha = 0 \).

Case 1 : \(\alpha = 0 \)

Let \(n \) be an integer whose decomposition into prime factors is \(n = p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_m^{\alpha_m} \) with \(p_1 \neq p \) for all \(i \). Let \(x \) be a \(p \)-th root of unity modulo \(n \), we have shown in the above results that if \(p \) does not divide \(p_1 - 1 \), then \(p_1^{n_1} \) divides \(x - 1 \). The condition \(p \) divides \(\lambda(n) \) implies that it exists at least an integer \(i \) such that \(p \) divides \(p_i - 1 \), let \(\sigma \) be a permutation of the set \(\{1, 2, \ldots, m\} \) such that \(n = p_{\sigma(1)}^{\alpha_{\sigma(1)}} p_{\sigma(2)}^{\alpha_{\sigma(2)}} \ldots p_{\sigma(d+1)}^{\alpha_{\sigma(d+1)}} p_{\sigma(d+2)}^{\alpha_{\sigma(d+2)}} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} \) and \(p \) divides only \(p_{\sigma(d+1)}^{\alpha_{\sigma(d+1)}} p_{\sigma(d+2)}^{\alpha_{\sigma(d+2)}} \ldots p_{\sigma(m)}^{\alpha_{\sigma(m)}} \) divides \(x - 1 \).

We start our study by the following theorem:

Theorem 2.1: Let \(n \) be an integer whose decomposition into prime factors is \(n = p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_m^{\alpha_m} \) with \(p_1 \neq p \) for all \(i \) and \(p \) divides only \(p_1 - 1 \), then \(G_p(n) \) is a cyclic subgroup of \((\mathbb{Z}/n\mathbb{Z})^* \) of order \(p \).

Proof: Let \(x \) be a \(p \)-th root of unity modulo \(n \), we have \(p_2^{\alpha_2} \ldots p_m^{\alpha_m} \) divides \(x - 1 \), then \(x \) is a solution of one of the following systems:

- \(x - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m} K \)
- \(1 + x + x^2 + \ldots + x^{p-1} = p_1^{\alpha_1} K' \)
- \(x - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m} K \)
- \(1 + x + x^2 + \ldots + x^{p-1} = K' \)

Clearly, \(1 \) is the unique solution of the second system. Now, we will show that the first system have exactly \(p - 1 \) solutions, which follows immediately from the two following lemmas.

Lemma 2.3: The systems

- \(x - 1 = p_2^{\alpha_2} \ldots p_m^{\alpha_m} K \)
- \(1 + x + x^2 + \ldots + x^{p-1} = p_1^{\alpha_1} K' \)
- \(x - 1 = p_2^{\alpha_2} \ldots p_m^{\alpha_m} K \)
- \(1 + x + x^2 + \ldots + x^{p-1} = p_1^{\alpha_1} K' \)

have the same number of solutions respectively modulo \(n \) and \(n/p_1^{\alpha_1} \).

Proof: It is clear that any solution of \((\ast) \) is a solution of \((\ast\ast) \). Reciprocally let \(x \) be a solution of \((\ast\ast) \), then \(x^p \equiv 1 \mod{p_1 p_2^{\alpha_2} \ldots p_m^{\alpha_m}} \).
that is to say $x^p = 1 + p_1p_2^2 \ldots p_m^{\alpha_m}K_1$ and therefore

$$x^{p_1-1} = (1 + p_1p_2^2 \ldots p_m^{\alpha_m}K_1)^{p_1-1}$$

$$= 1 + \sum_{i=0}^{p_1-1} C_{p_1-1}^i (p_1p_2^2 \ldots p_m^{\alpha_m}K_1)^i + (p_1p_2^2 \ldots p_m^{\alpha_m}K_1)^{p_1-1}$$

It is easily verified that all $C_{p_1-1}^i$ are divisible by p_1 and $p_1-1 \geq \alpha_1$, thus $x^{p_1-1} = \equiv 1 \mod n$. From the other hand

$$x^{p_1-1} = (1 + p_2^2 \ldots p_m^{\alpha_m}K)^{p_1-1}$$

$$= 1 + \sum_{i=0}^{p_1-1} C_{p_1-1}^i (p_2^2 \ldots p_m^{\alpha_m}K)^i + (p_2^2 \ldots p_m^{\alpha_m}K)^{p_1-1}$$

and as the $C_{p_1-1}^i$ are divisible by p_1 and K is not divisible by p_1, then x^{p_1-1} is divisible by all p_1 except p_1 and consequently x^{p_1-1} is a solution of (\ast). Let x and y be two solutions of $(\ast \ast)$ such as $x^{p_1-1} = y^{p_1-1} \mod n$ and thus $x^{p_1-1} = y^{p_1-1} \mod [p_1]$, hence $x \equiv y \mod [p_1]$, on the other hand it is clear that $x \equiv y [p_2^2 \ldots p_m^{\alpha_m}]$ and consequently $x \equiv y [p_2^2 \ldots p_m^{\alpha_m}] \mod n[p_1]$. We therefore conclude that the number of solutions of (\ast) is greater than or equal to that of $(\ast \ast)$. Thus the systems (\ast) and $(\ast \ast)$ have the same number of solutions modulo n and $n/p_1^{\alpha_1-1}$ respectively.

Lemma 2.4: The following system

$$\begin{cases}
x - 1 = p_2^2 \ldots p_m^{\alpha_m}K \\
1 + x + x^2 + \ldots + x^{p-1} = p_1K
\end{cases}$$

has $p - 1$ solutions modulo $n/p_1^{\alpha_1-1}$.

Proof:

We know that $\mathbb{Z}/p_1\mathbb{Z}$ is the field of decomposition of the polynomial $X^{p_1} - X$, and more precisely we have:

$$X^{p_1} - X = \prod_{i=0}^{p_1-1} (X - i)$$

and therefore

$$X^{p_1-1} - 1 = \prod_{i=1}^{p_1-1} (X - i)$$

and as p divides $p_1 - 1$ then the polynomial $X^p - 1$ divides $X^{p_1-1} - 1$ and therefore the polynomial $X^p - 1$ is also a product of factors of degree 1, to that is to say

$$X^p - 1 = \prod_{i=1}^{p} (X - \gamma_i)$$

and as 1 is a root of $X^p - 1$ then we take $\gamma_1 = 1$ and finally we obtain

$$1 + X + X^2 + \ldots + X^{p-1} = \prod_{i=2}^{p} (X - \gamma_i)$$

and consequently the system $(\ast \ast)$ is equivalent to the following systems:

$$\begin{cases}
x - 1 = p_2^2 \ldots p_m^{\alpha_m}K_2 \\
x - \gamma_2 = p_1K_2' \\
x - \gamma_3 = p_1K_3' \\
\vdots \\
x - \gamma_p = p_1K_p'
\end{cases}$$

It is clear that each of these systems has only one solution modulo $p_1p_2^2 \ldots p_m^{\alpha_m}$. Also the solutions of these systems are 2 by 2 distinct. Indeed if we denote x_i the solution of the following system

$$\begin{cases}
x - 1 = p_2^2 \ldots p_m^{\alpha_m}K_i \\
x - \gamma_i = p_1K_i'
\end{cases}$$

then $x_i \equiv \gamma_i \mod [p_1]$. Since the γ_i are distinct modulo p_1, then the x_i are also distinct. We conclude that $(\ast \ast)$ has $p - 1$ solutions modulo $n/p_1^{\alpha_1-1}$.

Remark:

The proof of the previous theorem gives an algorithm for calculating the solutions of (\ast), and this is done in two steps:

Step 1

We resolve $(\ast \ast)$, the most difficult point in this step is to determine the γ_i. We must give the factorization of the polynomial $1 + X + X^2 + \ldots + X^{p-1}$ in the field $\mathbb{Z}/p_1\mathbb{Z}$ and for this we can use Berlekamp’s algorithm [8] or Cantor-Zassenhaus algorithm [9]. Then we decompose $(\ast \ast)$ in small systems that are resolved easily with Euclidean’s algorithm.

Step 2

To find the solutions of (\ast), it is sufficient to see that they are also solutions of $(\ast \ast)$ set to the power $p_1^{\alpha_1-1}$ modulo n.

Note also that the set of solutions of (\ast) forms with 1 a cyclic group of order p_1 then any solution of (\ast) generates this group. Thus in practice it is sufficient to determine a solution of (\ast) to find the others.

A sample calculation:

We want to determine the elements of order 7 modulo n with $n = 10609215 = 29^4 \ast 5 + 3$. The first step consists to give the factorization of $1 + X + X^2 + \ldots + X^{29}$ in the field $\mathbb{Z}/29\mathbb{Z}$, by using Berlekamp’s algorithm, we obtain:

$$1 + X + X^2 + \ldots + X^{29} = (X + 4)(X + 5)(X + 6)(X + 9)(X + 13)(X + 22).$$

Let’s consider the following system

$$\begin{cases}
x - 1 = 15K \\
x + 4 = 29K'
\end{cases}$$

which gives $29K' - 15K = 5$, and by the euclidian algorithm we obtain $K' = -5$ and $K = -10$.

International Scholarly and Scientific Research & Innovation 4(7) 2010 981

ISNI:0000000091950263
Therefore $x = -149 = 286$ modulo $435 = 29 \times 5 \times 3$. Thereby $286^{286} \mod n = 1006441$ is an element of order 7 modulo n and consequently the elements of $G_7(n)$ are

$$G_7(n) = \{1006441, 1006441^2, \ldots, 1006441^7\}$$

that is to say

$$G_7(n) = \{1006441, 10684356, 6860611, 4797001, 5450251, 9979951, 1\}$$

Now, we give an algorithm in MAPLE which allows us for any fixed integer n and a prime odd number p, as described in the last theorem, to give a generator of the cyclic group $G_p(n)$.

Algorithm 2.1

Remark:
The Berlekamp’s procedure used in this algorithm is predefined in MAPLE.

In the remainder of this paragraph, considering an integer n whose decomposition in prime factors is $n = p_1^{d_1} p_2^{d_2} \cdots p_m^{d_m}$ and p a prime odd number such that $p_i \neq p$ for all i. For a fixed permutation we can write $n = p_1^{d_1} p_2^{d_2} \cdots p_d^{d_d} p_{d+1} \cdots p_m^{d_m}$ with p divides $p_i - 1$ for all $i \in \{1, \ldots, d\}$. We have seen that if x is a p-th root of unity modulo n, then $p^{d_1+1} \cdots p^{d_m}$ divides $x - 1$. Thus $p^{d_1+1} \cdots p^{d_m}$ don’t have a significant role in our study, for the rest we write $p^{d_1+1} \cdots p^{d_m} = A$.

Definition 2.2:
Let x a p-th root of unity modulo n, we say that x is initial if all the $p_i, i \in \{1, \ldots, d\}$ divides $x - 1$ except for only one p_i. We say that this p-th root is associated to p_i, and we write:

$$x - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} A K$$

with K is an integer not divisible par p_i.

We denote by $G^0_p(n)$ the set formed by the unity and the initial p-th roots of unity associated to p_i, and we have the following theorem:

Theorem 2.2:

$G^0_p(n)$ is a cyclic subgroup of $G_p(n)$ with cardinality p.

Proof ()**: The initial p-th roots of unity associated to p_i are the solutions of the system:

$$\begin{align*}
 x - 1 &= p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} A K \\
 1 + x + x^2 + \ldots + x^{p-1} &= p_i^{\alpha_i} K'
\end{align*}$$

We saw in the foregoing that this system have $p - 1$ solutions modulo n and then $\text{Card}(G^0_p(n)) = p$. Let’s prove now that $G^0_p(n)$ is a subgroup. Let x and y be two solutions of (**), we have

$$\begin{align*}
 x - 1 &= p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} A K \\
 y - 1 &= p_1^{\beta_1} p_2^{\beta_2} \cdots p_i^{\beta_i} \cdots p_d^{\beta_d} A' K'
\end{align*}$$

and therefore

$$\begin{align*}
 x.y &= 1 + p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} A(K + K') + p_i^{\alpha_i} K K' \\
 x.y &= 1 + p_1^{\alpha_1} p_2^{\beta_2} \cdots p_i^{\beta_i} \cdots p_d^{\beta_d} A(K + K')
\end{align*}$$

Note that $x.y$ is p-th root of unity and therefore at this stage we have two cases. If p divides $(K + K' + p_1^{\alpha_1} p_2^{\beta_2} \cdots p_i^{\beta_i} \cdots p_d^{\beta_d} A K')$, then p_i divides $x.y - 1$ and we obtain $x.y = 1$. If p does not divide $(K + K' + p_1^{\alpha_1} p_2^{\beta_2} \cdots p_i^{\beta_i} \cdots p_d^{\beta_d} A K')$, then $x.y$ is an initial to p-th root of unity associated to p_i. It is clear that if x is a p-th root of unity, then its inverse $x^{-1} = x^{p-1}$ is an element of $G^0_p(n)$. Whereof $G^0_p(n)$ is a cyclic subgroup of $G_p(n)$ because its cardinality is a prime number p. ■
and as \(p_i \) does not divide \(K_1 \) also \(p_i \) does not divide \(K_2 \), then \((p_1^{\alpha_1} K_1 + p_2^{\alpha_2} K_2) \) is not divisible by both \(p_i \) and \(p_j \).

Definition 2.3: Let \(x \) be a \(p \)-th root of unity modulo \(n \), we say that it is final if all the \(p_i, i \in \{1, \ldots, d\} \) does not divide \(x - 1 \), that is to say \(x - 1 = AK \), with \(K \) an integer not divisible by any \(p_i, i \in \{1, \ldots, d\} \).

Remark :
The existence of final \(p \)-th roots of unity modulo \(n \) is ensured by the preceding proposition, in fact if for all \(i \in \{1, \ldots, d\} \) we take \(x_i \) an initial \(p \)-th root of unity associated to \(p_i \), then
\[
\prod_{i=1}^{d} x_i \text{ is a final } p \text{-th root of unity modulo } n.
\]

Definition 2.4: Let \(x \) and \(y \) be two \(p \)-th roots of unity modulo \(n \), we say that \(y \) is a final conjugate of \(x \) if \(x \cdot y - 1 \) is not divisible by any of the \(p_i \), \(i \in \{1, \ldots, d\} \), that is to say \(x, y \) is a final \(p \)-th root of unity modulo \(n \).

Proposition 2.4: Any \(p \)-th root of unity modulo \(n \) have a final conjugate.

Proof :
If \(x = 1 \) or \(x \) is a final \(p \)-th root of unity modulo \(n \), then we have the result. When \(d = 1 \), then a final \(p \)-th root of unity modulo \(n \) is also an initial \(p \)-th root of unity associated to \(p_1 \) and thus all the \(p \)-th roots of unity distinct from 1 are final. Now, suppose that \(d \geq 2 \) and \(x - 1 \) is divisible by a nonempty subset of \(p_i \) of cardinality \(t < d \) and we can assume that, for a fixed permutation, \(p_i \) is \(p_1, p_2, \ldots, p_t \) and thus
\[
x - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} AK
\]
with \(K \) is an integer which is not divisible by any of the \(p_i \), \(i \in \{1, \ldots, t\} \). For all \(i \in \{1, \ldots, t\} \) the \(p_i \)-th root of unity associated to \(p_i \) and therefore
\[
x_i = 1 + p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_t^{\alpha_t} AK_i
\]
with \(K_i \) not divisible by \(p_i \), and thus
\[
\prod_{i=1}^{t} x_i = \prod_{i=1}^{t} (1 + p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_t^{\alpha_t} AK_i) = 1 + \prod_{i=1}^{t} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_t^{\alpha_t} AK_i
\]
with \(K_i \) not divisible by \(p_i \), but
\[
\prod_{i=1}^{t} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_t^{\alpha_t} K_i
\]
is not divisible by any of the \(p_i \), \(i \in \{1, \ldots, t\} \) therefore \(y = \prod_{i=1}^{t} x_i \) is a \(p \)-th root of unity satisfies
\[
x.y = 1 + \prod_{i=1}^{t} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_t^{\alpha_t} AM
\]
and it is clear that \((p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_t^{\alpha_t} AK) \) is not divisible by any of the \(p_i \), \(i \in \{1, \ldots, d\} \), and hence the result.

Theorem 2.3: Let \(x \) be a final \(p \)-th root of unity modulo \(n \), then it exists \(d \) integers \(K_1, K_2, \ldots, K_d \) such that:
\[
x = 1 + \sum_{i=1}^{d} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} AK_i
\]
and
\[
(1 + p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} AK_i) = 1 \quad [n] \quad \forall 1 \leq i \leq d.
\]

Proof :
Since \(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_d^{\alpha_d} \) and \(p_d^{\alpha_d} \) are coprime then it exists two integers \(K'_d \) and \(K_d \) such as
\[
1 = p_d^{\alpha_d} K'_d + p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{d-1}^{\alpha_{d-1}} K_d \quad (*)
\]
and therefore
\[
x - 1 = p_d^{\alpha_d} AK'_d + p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{d-1}^{\alpha_{d-1}} K_d
\]
with \(K'_d = ((x - 1)/A)K_d \) and \(K_d = ((x - 1)/A)K'_d \).
We have:
\[
(x - p_d^{\alpha_d} AK_d)' = (x - (x - 1)p_d^{\alpha_d} K_d)' = ((1 - p_d^{\alpha_d} K_d) + p_d^{\alpha_d} K_d)' = (\alpha(1 - p_d^{\alpha_d} K_d) + p_d^{\alpha_d} K_d)' = (xp_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{d-1}^{\alpha_{d-1}} K_d + p_d^{\alpha_d} K_d)' = (p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_d^{\alpha_d})' [p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_d^{\alpha_d}] = 1 \quad [p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_d^{\alpha_d}] \quad \text{from (*)}
\]
On the other hand
\[
x - (x - 1)p_d^{\alpha_d} K_d' = 1 - (x - 1)(1 - p_d^{\alpha_d} K_d') = 1 \quad [A]
\]
Thus \((x - (x - 1)p_d^{\alpha_d} K_d') = 1 \quad [n] \) and consequently \((1 + p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_d^{\alpha_d} AK_d)' = 1 \quad [n] \).
Suppose that it exists some integers \(K_1, K_2, \ldots, K_d \) and \(K'_t \) such as:
\[
x = 1 + \sum_{i=1}^{d} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} AK_i + p_1^{\alpha_1} \cdots p_d^{\alpha_d} K'_t
\]
and
\[
(1 + p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} AK_i)' = 1 \quad [n] \quad \forall t \leq i \leq d.
\]
Let \(K_{t-1} \) and \(K'_{t-1} \) be two integers such as
\[
1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{t-1}^{\alpha_{t-1}} K_{t-1} + p_{t-1}^{\alpha_{t-1}} K'_{t-1} \quad (**)
\]
and therefore
\[
p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_d^{\alpha_d} AK_1 = p_1^{\alpha_1} \cdots p_{t-1}^{\alpha_{t-1}} p_d^{\alpha_d} AK_{t-1} + p_{t-1}^{\alpha_{t-1}} \cdots p_d^{\alpha_d} AK_1 K_{t-1}.
\]
We have
\[
(p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1 - p_{t-1}^\alpha \ldots p_{d}^\alpha AK'_{t}K_{t-1})^p =
((p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1)(1 - p_{t-1}^\alpha K_{t-1}) + p_{t-1}^\alpha K_{t-1}^p)
= ((p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1)p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha \tilde{K}_{t-1} + p_{t-1}^\alpha \tilde{K}_{t-1}^p)
= (p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1)(p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha \tilde{K}_{t-1} + p_{t-1}^\alpha \tilde{K}_{t-1}^p)
= (p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1)(p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha \tilde{K}_{t-1} + p_{t-1}^\alpha \tilde{K}_{t-1}^p)
\]

however
\[
(p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1)^p =
(x - \sum_{i=t}^{d} p_{i}^\alpha p_{i+1}^\alpha \ldots p_{d}^\alpha AK'_{i})^p
= x^p [p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha A]
= 1 [p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha A]
\]
and consequently
\[
(p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1 - p_{t-1}^\alpha \ldots p_{d}^\alpha AK'_{t}K_{t-1})^p
= (p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1 - p_{t-1}^\alpha \ldots p_{d}^\alpha AK'_{t}K_{t-1})^p
= 1 [p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha A]
\]
also it is clear that
\[
(p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1 - p_{t-1}^\alpha \ldots p_{d}^\alpha AK'_{t}K_{t-1})^p
= 1 [p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha A]
\]
and so
\[
(p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK'_{t} + 1 - p_{t-1}^\alpha \ldots p_{d}^\alpha AK'_{t}K_{t-1})^p = 1 [n]
\]
That means
\[
(1 + p_{t}^\alpha \ldots p_{d}^\alpha AK'_{t}K_{t-1})^p = 1 [n]
\]
We set $K_{i-1} = K'_{i-1}$ and $K'_{t-1} = K_{t-1}$, we obtain so
\[
x = 1 + \sum_{i=t}^{d} p_{i}^\alpha p_{i+1}^\alpha \ldots p_{d}^\alpha AK_{i} +
\]
with
\[
(1 + p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK_{i})^p = 1 [n] \quad \forall t - 1 \leq i \leq d
\]
Thus by induction, we obtain
\[
x = 1 + \sum_{i=t}^{d} p_{i}^\alpha p_{i+1}^\alpha \ldots p_{d}^\alpha AK_{i} + p_{t}^\alpha \ldots p_{d}^\alpha AK'_{t-1}
= 1 + \sum_{i=t}^{d} p_{i}^\alpha p_{i+1}^\alpha \ldots p_{d}^\alpha AK_{i} + p_{t}^\alpha \ldots p_{d}^\alpha AK'_{t-1}
\]
with
\[
(1 + p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK_{i})^p = 1 [n] \quad \forall t - 1 \leq i \leq d
\]

Corollary 2.2: Any final p-th root of unity modulo n is a product of d initial p-th roots associated respectively to p_1, p_2, \ldots and p_{d}.

Proof: From the precedent theorem, it exists some integers K_1, K_2, \ldots, K_d such as:
\[
x = 1 + \sum_{i=t}^{d} p_{i}^\alpha p_{i+1}^\alpha \ldots p_{d}^\alpha AK_{i}
\]
and
\[
(1 + p_{t}^\alpha p_{t+1}^\alpha \ldots p_{d}^\alpha AK_{i})^p = 1 [n] \quad \forall t - 1 \leq i \leq d
\]
If we set $x_i = 1 + p_{i}^\alpha p_{i+1}^\alpha \ldots p_{d}^\alpha AK_{i}$, then x_i is a p-th root of unity modulo n also from the construction of K_i in the preceding proof, K_i is not divisible by p_i. Thus x_i is an initial p-th root associated to p_i. On the other hand we have
\[
\prod_{i=t}^{d} x_i = \prod_{i=t}^{d} (1 + p_{i}^\alpha p_{i+1}^\alpha \ldots p_{d}^\alpha AK_{i})
\]
\[
= 1 + \sum_{i=t}^{d} p_{i}^\alpha p_{i+1}^\alpha \ldots p_{d}^\alpha AK_{i} [n] = x.
\]

Corollary 2.3: Every p-th root of unity modulo n is a product of initial p-th roots.

Proof: Let x be a p-th root of unity modulo n, if this root is final, then the result is immediate, otherwise there is x_1, x_2, \ldots and
\[
x_i = x_1^{p_1} x_2^{p_2} \ldots x_{t-1}^{p_{t-1}} x_t^{p_t} \ldots x_d^{p_d}
\]
from the preceding corollary there exists y_1, y_2, \ldots and y_d initial p-th roots of unity modulo n associated respectively to p_1, p_2, \ldots and p_d such as $x \prod_{i=1}^{t} x_i$ is final p-th root of unity modulo n and thus $x = \prod_{i=1}^{t} x_i - 1 \prod_{i=1}^{d} y_i$ and as the set of initial p-th roots of unity modulo n associated to p_i form with 1 a group, then x can be written like following $x = \prod_{i=1}^{d} z_i$, with z_i is either 1 or an initial p-th root associated to p_i.

Corollary 2.4: $G_p(n)$ is generated by the initial p-th roots of unity modulo n.

Remark: As for each p_i the set of initial p-th roots of unity modulo n associated to p_i form with 1 a cyclic group then
\[
G_p(n) = \langle x_1, x_2, \ldots, x_d \rangle
\]
with x_i an initial p-th root of unity modulo n associated to p_i.

International Scholarly and Scientific Research & Innovation 4(7) 2010 984

ISNI:0000000091950263
Theorem 2.4: The map

$$\varphi : G_p^{\phi_1}(n) \times G_p^{\phi_2}(n) \times \cdots \times G_p^{\phi_d}(n) \rightarrow G_p(n)$$

$$(x_1, x_2, \ldots, x_d) \rightarrow x_1 x_2 \cdots x_d$$

is an isomorphism of groups.

Proof:
We have shown that φ is a surjective morphism of groups, remains to prove that it is injective.
We have $\varphi(x_1, x_2, \ldots, x_d) = 1 \iff x_1, x_2, \ldots, x_d = 1$.
Assume for the following that there exists an integer i such that $x_i \neq 1$.
We can easily verify that $x_1, x_2, \ldots, x_d = 1$ is also not divisible.
By p_i but this is absurd, thus $x_1 = 1$ for all i and hence φ is injective.

From the previous theorem it is clear that $Card(G_p(n)) = p^d$, where d is a number of distinct
prime factors of n such that p_i divides $q - 1$, that is to say $d = \alpha_p(n)$ and we obtain the following result:

Corollary 2.5:

$$Card(G_p(n)) = p^{\alpha_p(n)}.$$

Remark:
From the previous theorem we have

$$G_p(n) = \{ \prod_{1 \leq i \leq d} x_i^{a_i} \mid a_i \in \{0, 1, \ldots, p_i - 1\}, \prod_{i=1}^{d} x_i \}$$

with x_i is a generator of the cyclic group $G_p^{\phi_i}(n)$.

Example:
We give now an algorithm written in Maple that allows us
to give a generating set of the group formed by the p-th roots of unity
modulo n, where d is the number of distinct prime factors of n such that
p_i divides $n - 1$ for all i and hence φ is injective.

We show in the same manner that this system has exactly
one integer i such that p_i divides $n - 1$. For a fixed permutation
we can write $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ with $p_i \neq p_j$ for all i and let x be a
p-th root of unity modulo n, the above results show that if p_i does not divide $p_j - 1$ then $p_i^{\alpha_i}$ divides $x - 1$, on the other hand we have $x^p = 1[n]$ implies that p_i divides $(x - 1)(1 + x + \ldots + x^{p-1})$ and from the lemma 2.1 we obtain p_i divides $x - 1$ and $1 + x + \ldots + x^{p-1}$.

Also provided p_i divides $\lambda(n)$ implies that there exists at least
one integer i such that p_i divides $p_j - 1$. For a fixed permutation
we can write $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ with p_i divides $p_j - 1$ for all $i \in \{1, \ldots, d\}$ and does not divide $p_i - 1$ for every $i \in \{d + 1, \ldots, m\}$. Assume for the following $p_{d+1}^{\alpha_{d+1}} \cdots p_m^{\alpha_m} = A$.

We define in the same manner the initial p-th roots of unity
modulo n by replacing A with A. The initial p-th roots of unity
modulo n associated to p_i, $i \in \{1, \ldots, d\}$ are the solutions of the system:

$$x - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} pAK$$

$$1 + x + x^2 + \ldots + x^{p_i-1} = p_i^{\alpha_i} K'$$

We show in the same manner that this system has exactly
$p - 1$ roots modulo n. Thus for all $i \in \{1, \ldots, d\}$ there are
$p - 1$ initial p-th roots associated to p_i. We also show that
the initial p-th roots of unity modulo n associated to p_i form
with 1 a cyclic subgroup of $G_p(n)$ of cardinality p and it is
denoted as $G_p^{\phi_i}(n)$.

We define in the same way a final p-th root of unity and its
conjugate by replacing A by pA and we obtain the following theorem:

Theorem 2.5: Let x be a final p-th root of unity modulo n, then there exists integers K_1, K_2, \ldots, K_d
such that:

$$x = 1 + \sum_{i=1}^{d} p_i^{\alpha_i} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_d^{\alpha_d} pAK_i$$

Vol:4, No:7, 2010
Finally, note that the product of d\thinspace p\thinspace n$ We deduce that any final A\thinspace p\thinspace n$ is a cyclic group of order p. Hence every p\thinspace p\thinspace n$ is generated by the initial p\thinspace p\thinspace n$ of unity and more precisely if we denote x_i an initial p\thinspace p\thinspace n$ of unity associated to p_i, then

$$G_p(n) = \langle x_1, x_2, \ldots, x_d \rangle.$$

Also we have the following results:

Theorem 2.6: The map $\varphi : G_p^n(n) \times G_p^2(n) \times \ldots \times G_p^d(n) \rightarrow G_p(n)$

$$(x_1, x_2, \ldots, x_d) \mapsto x_1 x_2 \ldots x_d$$

is an isomorphism of groups.

Corollary 2.6:

$$\text{Card}(G_p(n)) = p^{n_p(n)}.$$

Remark:

From the previous theorem we can easily show that $G_p(n) = \{ \prod_{i_1, \ldots, i_d=1}^{d} x_i^{i_1} x_2^{i_2} \ldots x_d^{i_d} \mid , i \in \{1, 2, \ldots, p\} \}$

with x_i is a generator of the cyclic group $G_p^i(n)$.

Finally, note that Algorithm 2.2 remains valid in this case.

Case 3 : $\alpha \geq 2$

Let n be an integer whose decomposition into prime factors is $n = p^\alpha p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m}$ with $p_i \neq p$ for all i and $\alpha \geq 2$. The fact that $\alpha \geq 2$ ensures that $G_p(n)$ is not reduced to $\{1\}$.

Suppose that for every i, p does not divide $p_i - 1$ and let x be a p-th root of unity modulo n, then $p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m}$ divides $x - 1$ and by Proposition 2.2 it follows that p^α divides $x - 1$.

So x is a solution of the system

$$\begin{cases}
x - 1 = p^{\alpha - 1} p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m} K \\
1 + x + x^2 + \ldots + x^{p - 1} = K'
\end{cases}$$

But this system has p solutions modulo n which are $1, 1 + n/p, 1 + 2n/p, \ldots$ and $1 + (p - 1)n/p$. Then we obtain the following result:

Proposition 2.5: Let $n = p^\alpha p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m}$ with $\alpha \geq 2$ and p does not divide $p_i - 1$ for all i, then

$$G_p(n) = \{ 1 + kn/p \mid 0 \leq k \leq p - 1 \}$$

Remark:

It is clear that $G_p(n)$ is a cyclic group of order p. We will now exclude this case from our study, that is, there exists at least i such that p divides $p_i - 1$. For a fixed permutation we can write $n = p^\alpha p_1^{\alpha_1} \ldots p_d^{\alpha_d} \ldots p_m^{\alpha_m}$ with p divides $p_i - 1$ for all $i \in \{d + 1, \ldots, m\}$ and does not divide $p_i - 1$ for all $i \in \{1, \ldots, d\}$ and assume for the rest of this paper $p_{d+1}^{\alpha_{d+1}} \ldots p_m^{\alpha_m} = A$.

Definition 2.5: Let x be a p-th root of unity modulo n, x is said of class zero if $x - 1 = p^{\alpha - 1} p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_d^{\alpha_d} AK$ with K an integer.

It is clear that there are p p-th roots of unity of class zero which are $\{1 + kn/p ; 0 \leq k \leq p - 1\}$ and one can easily verify that they form a cyclic group of order p denoted $G_p^0(n)$.

Definition 2.6: Let x be a p-th root of unity modulo n, it said initial root if every $p_i, i \in \{1, \ldots, d\}$ divides $x - 1$ except for only one p_i. We said that this root is associated to p_i. And we write:

$$x - 1 = p^{\alpha - 1} p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_d^{\alpha_d} AK$$

with K an integer that is not divided by p_i.

Theorem 2.7: There exists $p^2 - p$ initial p-th roots of unity associated to p_i for all $1 \leq i \leq d$.

Proof:

We may assume $i = 1$, the initial p-th roots associated to p_1 are the solutions of the system:

$$\begin{cases}
x - 1 = p^{\alpha - 1} p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_d^{\alpha_d} AK \\
1 + x + x^2 + \ldots + x^{p - 1} = p^{\alpha_1} K'
\end{cases}$$

and we conclude with the following lemmas.

Lemma 2.5: The following systems have the same number of solutions respectively modulo n and $n/p_1^{\alpha_1 - 1}$.

$$\begin{cases}
x - 1 = p^{\alpha_1 - 1} p_1^{\alpha_2} \ldots p_d^{\alpha_d} AK \\
1 + x + x^2 + \ldots + x^{p - 1} = p^{\alpha_1} K'
\end{cases}$$

Proof:

It is clear that any solution of (\ast) is a solution of $(\ast\ast)$. Reciprocally let x be a solution of $(\ast\ast)$, then $x^p = 1 [p^\alpha p_1 p_2 \ldots p_d A]$ that is to say $x^p = 1 + p^\alpha p_1 p_2 \ldots p_d AK_1$ and therefore

$$x^{p_1^{\alpha_1 - 1}} = (1 + p^\alpha p_1 p_2 \ldots p_d AK_1)^{p_1^{\alpha_1 - 1}}$$

$$= 1 + \sum_{i=1}^{p_1^{\alpha_1 - 1}} C_1^{p_1^{\alpha_1 - 1}} (p_1 p_2 \ldots p_d AK_1)^i$$

$$+ (p^\alpha p_1 p_2 \ldots p_d AK_1)^{p_1^{\alpha_1 - 1}}$$
It is easily verified that all C_{i+1}^i are divisible by $p_i^{a_i}$ and $p_i^{a_i-1} \geq \alpha_i$, then $x^{p_i^{a_i-1}} \equiv 1[n]$. On the other hand

$$x^{p_i^{a_i-1}} = (1 + p^{a_i-1}p_2^{a_2} \ldots p_d^{a_d}AK)^{p_i^{a_i-1}}$$

$$= 1 + \sum_{i=1}^{p_i^{a_i-1}} C_{p_i^{a_i-1}}(p^{a_i-1}p_2^{a_2} \ldots p_d^{a_d}AK)^i$$

$$+ (p^{a_i-1}p_2^{a_2} \ldots p_d^{a_d}AK)^{p_i^{a_i-1}}$$

And as C_{i+1}^i are divisible by p_i and K is not divisible by p_i, then $x^{p_i^{a_i-1}} - 1$ is divisible by all p_i except p_i. Consequently $x^{p_i^{a_i-1}}$ is a solution of (\ast). Let x and y be two solutions of (\ast) such that $x^{p_i^{a_i-1}} = y^{p_i^{a_i-1}}[n]$, then $x^{p_i^{a_i-1}} - 1 = y^{p_i^{a_i-1}} - 1$. Hence $x \equiv y[p_i]$, on the other hand it is clear that $x \equiv y[p_i^{a_i-1}]$, therefore $x \equiv y[p_i^{a_i-1}p_2^{a_2} \ldots p_d^{a_d}]$. We conclude then that the systems (\ast) and $(\ast\ast)$ have the same number of solutions respectively modulo n and $n/p_i^{a_i-1}$.

Lemma 2.6: The following system have $p^2 - p$ solutions modulo $n/p_i^{a_i-1}$.

$$\begin{cases} x - 1 = p^{a_i-1}p_2^{a_2} \ldots p_d^{a_d}K \
1 + x + x^2 + \ldots + x^{p_i^{a_i-1}} = p_i K' \end{cases} \tag{\ast\ast}$$

Proof: We know that

$$X^p - 1 = \prod_{i=1}^{p_i} (X - \gamma_i)$$

and as 1 is a root of $X^p - 1$ then we take $\gamma_1 = 1$. Finally, we obtain

$$1 + x + x^2 + \ldots + x^{p_i^{a_i-1}} = \prod_{i=2}^{p_i} (X - \gamma_i)$$

and consequently $(\ast\ast)$ is equivalent to the following systems:

$$\begin{cases} x - 1 = p^{a_i-1}p_2^{a_2} \ldots p_d^{a_d}AK_2 \\
x - \gamma_2 = p_i K'_2 \\
\vdots \\
x - 1 = p^{a_i-1}p_2^{a_2} \ldots p_d^{a_d}AK_p \\
x - \gamma_p = p_i K'_p \end{cases}$$

It is clear that for each one of these systems have p solutions modulo $n/p_i^{a_i-1}$. Since, the solutions of these systems are distinct, we conclude that $(\ast\ast)$ have $p(p - 1)$ solutions modulo $n/p_i^{a_i-1}$.

Proposition 2.6: The set formed by the initial p-th roots of unity modulo n associated to p_i and by the elements of $G^0_p(n)$ is a subgroup of $G_p(n)$ denoted $G^0_p(n)$ and we have $Card(G^0_p(n)) = p^2$.

Proof: Let x and y be two elements of $G^0_p(n)$, there are three cases to distinguish:

- If x and y are in $G^0_p(n)$, then in this case xy belongs $G^0_p(n)$ since the latter is a group and hence xy is in $G^0_p(n)$.
- If x and y are respectively in $G^0_p(n) \setminus G^0_p(n)$ and $G^0_p(n)$, then we have $x - 1 = p^{a_i-1}p_2^{a_2} \ldots p_i^{a_i} \ldots p_d^{a_d}AK$ and $y - 1 = p^{a_i-1}p_2^{a_2} \ldots p_d^{a_d}AK'$. Hence xy is in $G^0_p(n)$.
- If x and y are in $G^0_p(n) \setminus G^0_p(n)$, then:

$$xy = 1 + p^{a_i-1}p_2^{a_2} \ldots p_i^{a_i} \ldots p_d^{a_d}A(K + p_i^{a_i}K')$$

The term $K + p_i^{a_i}K'$ is not divided by p_i and therefore xy is a p-th root of unity associated to p_i. Hence xy is in $G^0_p(n)$.

- Finally, we can see that $G^0_p(n) \setminus G^0_p(n)$ is a subgroup of $G_p(n)$ associated to p_i and consequently xy is in $G^0_p(n)$.

Definition 2.7: Let x be a p-th root, we said that x is of the first class if p^2 divides $x - 1$, otherwise it said to be of the second class.

Proposition 2.7: There are $p - 1$ initial p-th roots of unity associated to p_i which are of the first class.

Proof: The initial p-th roots associated to p_i which are of first class are solutions of the system:

$$\begin{cases} x - 1 = p^{a_i-1}p_2^{a_2} \ldots p_d^{a_d}AK \\
x + 1 = p_i^{a_i}K' \end{cases}$$

And from the previous we know that this system has $p - 1$ solutions modulo n.

Let denote by $G^\times_p(n)$ the set formed by 1 and the initial p-th roots of unity associated to p_i that are of first class and we can easily verify that $G^\times_p(n)$ is a cyclic subgroup of $G_p(n)$ of cardinality p and we have the following result:

Proposition 2.8: The map

$$\varphi : G^\times_p(n) \times G^0_p(n) \rightarrow G^0_p(n)$$

$$(x, y) \mapsto xy$$
is an isomorphism of groups.

Proof:
It is clear that φ is surjective morphism of groups. For the injectivity, let us consider two elements x and y of $G^+_{n}(n)$ and $G^0(n)$ respectively such that $x \cdot y = 1$, we have:

$$x \cdot y = 1 = p^\alpha p_{\alpha_1}^\alpha p_{\alpha_2}^\alpha \ldots p_{\alpha_d}^\alpha AK \text{ and } y \cdot x = 1 = p^{-\alpha} p_{\alpha_1}^{-\alpha} p_{\alpha_2}^{-\alpha} \ldots p_{\alpha_d}^{-\alpha} AK',$$

therefore

$$xy = 1 = p^\alpha p_{\alpha_1}^\alpha p_{\alpha_2}^\alpha \ldots p_{\alpha_d}^\alpha A(K + p_{\alpha}^{\alpha} K').$$

As $x \cdot y = 1$, then the term $K + p_{\alpha}^{\alpha} K'$ is divided by p_{α}^{α}, therefore p_{α}^{α} divides K, hence $x = y = 1$.\]

Definition 2.8: Let x be a p-th root of unity modulo n, we said x is final if all the p_i, $i \in \{1, \ldots, d\}$ does not divide $x - 1$, which means $x - 1 = p^{-\alpha} AK$, with K an integer not divisible by p_i, $i \in \{1, \ldots, d\}$.

Proposition 2.9: Any final p-th root of unity modulo n can be written in a single manner as product of a final p-th root of the first class by a class zero’s p-th root.

Proof:
Let x be a final p-th root of unity modulo n and let's consider an integer y of the form $y = 1 + p^\alpha AK$ and z a class zero’s p-th root. We have:

$$x \cdot y = x = 1 + p^\alpha AK$$

This equation has solutions K and K', also

$$(1 + p^\alpha AK)^p = 1, \text{ therefore } (1 + p^\alpha AK)^p = 1 \text{ as } x - 1 \text{ is divisible by none of the } p_i, \text{ which implies that } K \text{ is divisible by none of the } p_i,$$

this proves that $(1 + p^\alpha AK)$ is a final p-th root of the first class. Also it is clear that if we take K and K' as other solutions, then $1 + p^\alpha AK$ and $1 + p^{-\alpha} p_{\alpha_1}^{-\alpha} p_{\alpha_2}^{-\alpha} \ldots p_{\alpha_d}^{-\alpha} AK'$ are the same modulo n.

Remark:
If for all $i \in \{1, \ldots, d\}$ we take x_i an initial p-th root of the first class associated to p_i, then $\prod_{i=1}^{d} x_i$ is a final root of the first class. The following theorem shows that any final root of the first class is a product of this form.

Theorem 2.8: Any final p-th root of the first class is product of d initial p-th roots of the first class associated respectively to p_1, p_2, \ldots and p_d.

Proof:
Let x be a final p-th root of the first class, we know that there exist K_1, K_2, \ldots and K_d such that

$$x = 1 + \sum_{i=1}^{d} p^\alpha p_{\alpha_1}^\alpha p_{\alpha_2}^\alpha \ldots p_{\alpha_d}^\alpha AK_i$$

and

$$\left(1 + p^\alpha p_{\alpha_1}^\alpha p_{\alpha_2}^\alpha \ldots p_{\alpha_d}^\alpha AK_i\right)^p = 1 \quad \forall 1 \leq i \leq d.$$
Proposition 2.8
The previous result shows that ϕ is an isomorphism of groups.

Generally, we have the following result:

and as $G_p^{\pm i}(n)$ and $G_p(\bar{p})(n)$ are groups, then we obtain the result.

Remark:
The previous result shows that $G_p(n)$ is generated by the initial p-th roots of the first class and the class zero’s p-th roots and as $G_p^{0}(n)$ and $G_p^{\pm}(n)$ are cyclic groups, then

$G_p(n) = \langle x_1, x_2, \ldots, x_d, x_0 \rangle$

with x_1 is an initial p-th root of the first class associated to p_1 and y_0 is a class zero’s p-th root.

From Proposition 2.8 any initial p-th root associated to p_1 can be written uniquely as a product of an initial first class p-th root associated to p_1 by class zero’s p-th root.

Theorem 2.9: The map

$\varphi: G_p^{+\pm}(n) \times G_p^{\pm}(n) \times G_p^0(n) \times G_p^{\bar{p}}(n) \rightarrow G_p(n)$

$(x_1, x_2, \ldots, x_m, y) \rightarrow x_1x_2\ldots x_m.y$

is an isomorphism of groups.

Proof:
It is clear that φ is a surjective morphism of groups and we show that it is injective as in the analogous previous results.

Corollary 2.8:

Card($G_p(n)$) = $p^{\alpha_p(n)+1}$.

Remark:
From the previous theorem we have

$G_p(n) = \{ x_1^{i_1}x_2^{i_2}\ldots x_d^{i_d}x_0 \}$

with $I = \{1, 2, \ldots, p\}$, x_i is one generator of the cyclic group $G_p^0(n)$ for $i \neq 0$ and x_0 is a p-th root of the first class different from 1.

We now give an algorithm in MAPLE that allows us to find a generating set of $G_p(n)$. For the computing of x_0 it suffices to take $x_0 = 1 + n/p$ and for the others, x_i, we proceed as above.

Gene_p := proc(n, p) local LB, LD, i, LFact, GEN, P; LD := []; LB := []; GEN := [];
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
if (LFact[i][1] − 1 mod p = 0) then
end;
end;
end:
end:
end:
end:

Algorithm 2.3

III. Conclusion

For the cardinality of $G_p(n)$, we can summarize it in the following theorem:

Theorem 3.1: Let $n \geq 3$ be an integer and p be a prime odd number which does not divide n, then:

- Card($G_p(n)$) = $p^{\alpha_p(n)}$
- Card($G_p(pm)$) = $p^{\alpha_p(n)}$
- Card($G_p(p^{\alpha_m}n)$) = $p^{\alpha_p(n)+1}$ with $\alpha \geq 2$

We will now give an algorithm which help us to find, from a fixed integer n, a generating set of $G_p(n)$.

Gene_p := proc(n, p) local LB, LD, i, LFact, GEN, P; LD := []; LB := []; GEN := [];
if (n mod p^2 = 0) then
GEN := []
end:
end:
end:
for i from 1 to nops(LFact) do
if (LFact[i][1] − 1 mod p = 0) then
end:
end:
LD := \{op(LD), LFact[i]\};
end:
end:
for \texttt{i} from 1 to nops(LD) do
P := convert(Berlekamp(x^p - 1, x) mod LD[i][1], list);
if (P[1] - x + 1 mod LD[i][1] <> 0) then
LB := Bezout(LD[i][1], n/(LD[i][1]^*LD[i][2]), P[1] - x + 1);
else
LB := Bezout(LD[i][1], n/(LD[i][1]^*LD[i][2]), P[2] - x + 1);
end:
end:
else
LB := Bezout(LD[i][1], n/(LD[i][1]^*LD[i][2]), P[2] - x + 1);
end:
end:
end:
for \texttt{i} from 1 to nops(LFact) do
if \(LFact[i][1] - 1 \mod p = 0\) then
LD := \{op(LD), LFact[i]\};
end:
end:
end:
for \texttt{i} from 1 to nops(LP) do
P := convert(Berlekamp(x^p - 1, x) mod LD[i][1], list);
if (P[1] - x + 1 mod LD[i][1] <> 0) then
LB := Bezout(LD[i][1], n/(LD[i][1]^*LD[i][2]), P[1] - x + 1);
else
LB := Bezout(LD[i][1], n/(LD[i][1]^*LD[i][2]), P[2] - x + 1);
end:
if (GEN = \[\]) then
GEN := \[\];
end;
eval(GEN);
end:

Algorithm 2.4

REFERENCES