Relationship between Sums of Squares in Linear Regression and Semi-parametric Regression

Dursun Aydin, and Bilgin Senel

Abstract—In this paper, the sum of squares in linear regression is reduced to sum of squares in semi-parametric regression. We indicated that different sums of squares in the linear regression are similar to various deviance statements in semi-parametric regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the semi-parametric regression model. Then, it is made an application in order to support the theory of the linear regression and semi-parametric regression. In this way, study is supported with a simulated data example.

Keywords—Semi-parametric regression, Penalized Least Squares, Residuals, Deviance, Smoothing Spline.

I. INTRODUCTION

REGRESSION analysis is a technique used for the modeling and analysis of numerical data consisting of values of a dependent variable \(y = \{y_1, y_2, ..., y_n\}^T \) and independent variables \(z_1, z_2, ..., z_k \). Generally, regression models can be used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships [1]; [2]. It is frequently encountered to these models in many application areas. Most used models can be given in the following way:

Linear regression model (LRM): Linear regression model attempts to model the relationship among a dependent variable, and \(k \) explanatory variables. LRM is given as following:

\[
y_i = \beta_0 + \sum_{j=1}^{k} \beta_j z_{ij} + \epsilon_i, i = 1, 2, ..., n
\]

(1)

where \(\beta = \{\beta_0, \beta_1, ..., \beta_k\} \) is a vector of unknown regression coefficients and \(\epsilon = \{\epsilon_1, \epsilon_2, ..., \epsilon_n\}^T \) is a vector of random errors, assumed to follow normal distributed with zero mean and constant variance \(\sigma^2 \).

Generalized linear regression model (GLRM): Generalized linear models extend the concept of the widely used linear regression model. GLRM is assumed to have the form:

\[
g(y_i) = \beta_0 + \sum_{j=1}^{k} \beta_j z_{ij} + \epsilon_i, i = 1, 2, ..., n
\]

(2)

where \(g(.) \) is called a link function, and \(\epsilon \) is a vector of random error with a suit distribution.

Semi-parametric regression model (SPRM): A semi-parametric regression model (SPRM) consists of two additive components, a linear parametric and a nonparametric part:

\[
y_i = \beta_0 + \sum_{j=1}^{k} \beta_j z_{ij} + f(x_i) + \epsilon_i, i = 1, 2, ..., n
\]

(3)

where \(\beta \) is a vector of finite dimensional parameter (or the vector of unknown regression coefficients), and \(f(.) \) is a smooth function of explanatory variable \(x \), and \(\epsilon \) denote an error term with zero mean and common variance \(\sigma^2 \).

Generalized semi-parametric regression model (GSPRM): Introducing a link \(g(.) \) for a semi-parametric model in (3) yields the generalized semi-parametric regression model:

\[
g(y_i) = \beta_0 + \sum_{j=1}^{k} \beta_j z_{ij} + f(x_i) + \epsilon_i, i = 1, 2, ..., n
\]

(4)

g denotes a known link function as in generalized additive model, \(\epsilon \) is a vector of random error with a suit distribution, and with zero mean and common variance \(\sigma^2 \). In the case of an identity link function \(g \) given in Eq. (4), GSPRM reduces to SPRM. [3]

In the section II, least square estimation of the linear regression model and analysis of variability in response are discussed. Section III reviews smoothing spline estimation of the semi-parametric regression model. Section IV discusses an application on simulated data set, while conclusions and discussion are offered in the section V.

II. LEAST SQUARES ESTIMATION OF THE LRM

One important goal of a regression analysis is to estimate the vector of unknown regression coefficients in model Eq. (1). The method of least squares is used more extensively than any other estimation procedure for building regression models. The method of least squares is designed to provide estimator \(\hat{\beta} \) of the \(\beta \) in Eq (1). Not that there are \(p = k + 1 \) regression coefficients. (1). It is suitable at this point to reintroduce the model Eq. (1) in matrix notation. The model can be written as:

\[
y = Z\beta + \epsilon
\]

(5)
In general, \(y \) is a \((n \times 1)\) vector of the observations, \(Z \) is an \((p \times 1)\) matrix of the levels of the independent variables, \(\beta \) is a \((p \times 1)\) vector of the regression coefficients, and \(\varepsilon \) is an \((n \times 1)\) vector of the random errors.

In the method of least squares, we wish to find the vector of least squares estimators, \(\hat{\beta} \), that minimize the sum of squares of the residuals:
\[
\sum_{i=1}^{n} e_i^2 = (y - Z\hat{\beta})^T(y - Z\hat{\beta}).
\]

The least squares estimators provide this minimum, defined as follows:
\[
\hat{\beta} = (Z^T Z)^{-1} Z^T y
\]

A. Analysis of Variability in the Response

The fitted values and the residuals in Eq. (5) are defined as:
\[
\hat{y} = Z\hat{\beta}, \quad \varepsilon = y - \hat{y}
\]

Table I

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Degrees of Freedom (DF)</th>
<th>Sum of Squares (SS)</th>
<th>Mean Square (MS)</th>
<th>(F)-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>(k)</td>
<td>(SS_R = \hat{\beta}^T Z^T y - ny\bar{y}^2)</td>
<td>(MS_R = SS_R / k - 1)</td>
<td>(MS_R / MS_R)</td>
</tr>
<tr>
<td>Residual</td>
<td>(n - k - 1)</td>
<td>(SS_{Res} = y^T y - \hat{\beta}^T Z^T y)</td>
<td>(MS_{Res} = SS_{Res} / n - k - 1)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(n - 1)</td>
<td>(SS_T = y^T y - n\bar{y}^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here \(F \)-statistic may be viewed as ratio that states variance explained by the model divided by variance due to model error. As a result, large values of \(F \)-statistic are state the significant of model. The coefficient of determination denoted as \(R^2 \) represent the proportion of variation in the response data that is explained by model. \(R^2 \) is denoted as
\[
R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_{Res}}{SS_T}
\]

Another way to represent the proportion of variation in the regression equation is denoted as \(R^2_{adj} \). Some analyst prefer to use an adjusted \(R^2 \) statistic, defined as:
\[
R^2_{adj} = 1 - \frac{MS_{Res} / (DF_{Res})}{SS_T / (DF_T)}.
\]

III. SMOOTHING SPLINE ESTIMATION OF THE SPRM

We consider the estimation of the SPRM in (3). In the matrix notation, Eq. (3) can be written as following way:
\[
y = Z\beta + f + \varepsilon \tag{10}
\]

where \(Z \) is the \((n \times n)\) matrix, \(\beta = (\beta_1, ..., \beta_p)^T \), \(y = (y_1, ..., y_n)^T \), \(f = (f(x_1), ..., f(x_n))^T \), and \(\varepsilon = (\varepsilon_1, ..., \varepsilon_n)^T \).

Estimation of the parameters of interest in equation (10) can be performed using smoothing spline. Mentioned here the vector parameter \(\hat{\beta} \) and the values of function \(f \) at sample points \(x_1, x_2, ..., x_n \) are estimated by minimizing the penalized residual sum of squares:
\[
PSS(\beta, f) = \sum_{i=1}^{n} [y_i - z_i^T \hat{\beta} - f(x_i)]^2 + \lambda \int_0^1 (f''(x))^2 \, dx \tag{11}
\]

Here, \(f \in C^2[0,1] \) and \(z_i \) is the \(i \)th row of the matrix \(Z \). When the \(\beta = 0 \), resulting estimator has the form
\[
\hat{f} = \left(\hat{f}(x_1), ..., \hat{f}(x_n) \right) = S_{\lambda}y,
\]

where \(S_{\lambda} \) a known positive-definite smoother matrix that depends on \(\lambda \) called as smoothing parameter, and the knots \(x_1, ..., x_n \) (see, [4];[5];[6];[7]).

For a pre-specified value of \(\lambda \) the corresponding estimators for \(f \) and \(\beta \) based on Eq. (11) can be obtained as follows [4]: Given a smoother matrix \(S_{\lambda} \), depending on a smoothing parameter \(\lambda \), construct \(\tilde{Z} = (I - S_{\lambda})Z \). Then, by using penalized least squares, mentioned here estimator are given by:
\[
\hat{\beta} = (\tilde{Z}^T \tilde{Z})^{-1} \tilde{Z}^T y \tag{12}
\]
\[\hat{y} = S_{\lambda} \left(y - Z \hat{\beta} \right) \]

A. Relationship between Deviance and Sum of Squares

The deviance plays the role of the residual sum of squares for generalized models, and can be used for assessing goodness of fit and comparing models. The deviance or likelihood ratio statistic of a fitted model is defined as

\[D = 2 \left[l(\hat{\beta}_{\text{max}}) - l(\hat{\beta}) \right] \Phi \]

Where \(l(\hat{\beta}_{\text{max}}) \) denotes the maximized likelihood of the saturated model that have one parameter per data point, \(\hat{\beta}_{\text{max}} \) is parameter value of \(\beta \) which maximizes \(l(\hat{\beta}) \), and \(l(\hat{\beta}) \) is a log-likelihood function of a sample \(n \) observation (i.e.,

\[l(\hat{\beta}) = \sum_{i=1}^{n} \log f(y_i) \], and \(\Phi \) is a dispersion parameter \([8]; [9]\). In the Gaussian family of distributions (for example, in SPRM), \(\Phi \) is just standard variance \(\sigma^2 \) and the residual deviance reduces to the residual sum of squares. The residual deviance is the deviance of fitted model, while the deviance for a model which includes the offset and possible an intercept term is called as null deviance. In this case, the null deviance reduces to the total sum of squares. Then, analogously to the equations (7), regression deviance for SPRM is defined as

\[\text{Regression Dev.} = \text{Null Dev.} - \text{Res. Dev.} \]

These can be combined to give the proportion deviance explained, a generalization of the \(R^2 \) value given in Eq. (8), as following way:

\[R^2_{\text{SPRM}} = \frac{\text{Regression Deviance}}{\text{Null Deviance}} = \frac{(\text{Null Deviance} - \text{Residual Deviance})}{(\text{Null Deviance})} \]

Similarly, we can generalize adjusted coefficient of determination given in Eq. (9), as follow:

\[R^2_{\text{adj,SPRM}} = \frac{(\text{Mean Null Dev.} - \text{Mean Res. Dev.})}{(\text{Mean Null Dev.)}} = \frac{\text{Res. Dev.}}{(\text{DF Res. Dev.)}} \]

For assessment of the SPRM, it is necessary to perform test on both the parametric and the nonparametric component. For the parametric component of the SPRM, we can generalize such as \(F - \text{Statistic} \) given Table I. The \(F - \text{Statistic} \) can be defined as:

\[F_{\text{Par.}} = \frac{(\text{DFRegression Deviance})}{(\text{Residual Deviance})} \]

By considering the deviances in SPRM and residual sum of squares in LRM, it can be performed by an approximate \(F - \text{Statistic} \) whether the nonparametric component of model is linear or whether SPRM provides a significantly better fit. The test is based on the differences of residual deviances and residual sum of squares for SPRM and LRM respectively. The \(F - \text{Statistic} \) can be given by

\[F_{\text{Nonp.}} = \frac{(\text{SSResidual Deviance})}{(\text{DFResidual Deviance})} \]

A. Empirical Results

According to the variables in above, the SPRM in \textit{gam package} is appeared as follows:

Call: gam(formula = y ~ s(x) + z, data = gam.data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.681 -0.214 0.029 0.245 0.531

(Dispersion Parameter for gaussian family taken to be 0.0841)

Residual Deviance: 7.9077 on 94 degrees of freedom

The summary of the results obtained by SPRM is given as follows:

| Variable | s | Df | Npar Df | Npar F | Pr(F) | Estimate | Std.Error | t-val | Pr(>|t|) |
|----------|---|----|---------|--------|-------|----------|-----------|-------|---------|
| (Const.) | 1 | | 1 | 1.987 | 0.087 | 23.05 | 1.85e-40 |
| s(x) | 3 | 45.485 | 2.2e-16 | | | | | | |
| z | 1 | | -0.125 | 0.108 | 2.65e-01 | -1.121 | | | |

TABLE II

DF FOR TERMS AND F-VALUES FOR NONPARAMETRIC EFFECTS AND T-VALUES FOR PARAMETRIC PART

A partial linear additive model relates y called as response or dependent variable to the independents variables given in previous section. As shown Table II, the parametric coefficients of the SPRM appear, while nonparametric coefficient doesn’t appear. It can be only displayed graphically because it can’t be expressed as parametric.

Fig. 1 shows the estimates (solid) and the 95% confidence intervals (dashed) for SPRM using smoothing spline. The plotted curve is a contribution of a term to the additive predictor. The effects of x called as noise predictor is very strong on the response variable. Firstly, as x is increasing, y is increasing too. Then, as x is again increasing, y is decreasing.

By using the variables in above, the LRM in `gam package` is appeared as follows:

```r
Call: lm(formula = y ~ x + z, data = gam.data)
```

The summary of the results obtained by LRM is giving following way:

Residuals:

<table>
<thead>
<tr>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.29</td>
<td>0.83</td>
</tr>
<tr>
<td>1.571</td>
<td>0.283</td>
<td>0.0213</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

B. Comparison of the Performances of the LRM and SPRM

To compare performances of the SPRM and LRM, it is performed an analysis of deviance table by using formula given in section 3.A. In summary, these results are given in the Table V. The residual deviance (9.9077) in Table V is smaller than residual sum of squares (19.387) in Table IV. Similarly both coefficient of determination and adjusted coefficient of determination given in the Table V are bigger than those of the Table IV. It can be said that SMPR provides a better fit than LRM. However, the difference between the adjusted coefficients of determination for SPRM and LRM are smaller than the difference between non-adjusted coefficients of determination. Thus, it can be said that adjusted coefficients of determination are more realistic in assessing the overall model performance. As shown Table V, it can be said that all of parametric coefficients are also
TABLE III
COEFFICIENTS OF LINEAR REGRESSION

| Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|---------|---------|
| (Constant)| 1.9944 | 0.1325 | 15.047 | 2e-16 |
| x | -2.3278 | 0.1680 | -13.854 | 2e-16 |
| z | -0.1460 | 0.1672 | -0.873 | 0.385 |

TABLE IV
ANALYSIS OF VARIANCE TABLE FOR LRM

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>DF</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2</td>
<td>38.362</td>
<td>19.181</td>
</tr>
<tr>
<td>Residual</td>
<td>97</td>
<td>19.387</td>
<td>0.200</td>
</tr>
<tr>
<td>Total</td>
<td>99</td>
<td>57.749</td>
<td>0.583</td>
</tr>
</tbody>
</table>

$R^2 = 0.664$

$R_{adj}^2 = 0.657$

F-stat: 95.905
p-value: < 2.2e-16

TABLE V
ANALYSIS OF DEVIANCE TABLE FOR SPRM

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>DF</th>
<th>Deviance</th>
<th>Mean Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>5</td>
<td>49.8419</td>
<td>9.96982</td>
</tr>
<tr>
<td>Residual</td>
<td>94</td>
<td>7.9077</td>
<td>0.08412</td>
</tr>
<tr>
<td>Null</td>
<td>99</td>
<td>57.7496</td>
<td>0.5833</td>
</tr>
</tbody>
</table>

$R^2 = 0.8631$

$R_{adj}^2 = 0.8558$

F-stat (Parametric) = 118.519
F-stat (Nonparametric) = 45.485

TABLE VI
ANALYSIS OF VARIANCE TABLE

| Model | Res. Df | Res.Sum Sq | DF | Sum Sq | F | Pr(>|F|) |
|---------|---------|------------|----|--------|-------|---------|
| LRM | 97 | 19.3871 | 3 | 11.4794| 48.485| 2.2e-16 |
| PLAM | 94 | 7.9077 | 3 | 48.485 | | |

significant to $F = statistic$ (parametric) that obtain by means of the Eq. (18). Furthermore, according to the Npar-F in the Table II, the nonparametric component is also able to test that significant or not. In addition to, it can perform an approximate $F = test$ whether the nonparametric component of model is linear or whether SPRM provides a significantly better fit. For this goal, $F = statistic$ (nonparametric) computed by using Eq.(19) is given Table V. An equivalent computation using gam package in S-plus and R is given in Table VI. $F = statistic$ (nonparametric) derived by Eq.(19) is equivalent to F in Table VI.

According to Table VI, it is said that the nonparametric function or component of model is significant curve and provide a better fit.

IV. CONCLUSION AND DISCUSSION

In the Gaussian family of distributions, we have demonstrated that the residual deviance can be easily reduces to the residual sum of squares. Besides, it is shown that the null deviance can be also reduces to the total sum of squares.

Furthermore, coefficient of determination and adjusted coefficient of determination play quite important role in assessing the goodness of fit of the regression models. We have indicated that these coefficients obtained by using LRM can be easily generalized to SPRM. Especially, adjusted coefficient of determination in SPRM is very proper for assessment of the model goodness of fit because it detects the degrees of complexity of the SPRM.

REFERENCES