A parametric Study on Deoiling Hydrocyclones
Flow Field

Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract—Hydrocyclones flow field study is conducted by performing a parametric study. Effect of cone angle on deoiling hydrocyclones flow behaviour is studied in this research. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Because of anisotropic behaviour of flow inside hydrocyclones LES is a suitable method to predict the flow field since it resolves large scales and model isotropic small scales. Large eddy simulation is used to predict the flow behavior of three different cone angles. Differences in tangential velocity and pressure distribution are reported in some figures.

Keywords—Deoiling hydrocyclones, Flow field, Hydrocyclone cone angle, Large Eddy Simulation, Pressure distribution

I. INTRODUCTION

HYDROCYCLONES are used in wide range of applications to separate different materials from liquids. Compactness, efficiency, reliability and low maintenance costs are their noteworthy characteristics. Although hydrocyclones have been used for industrial purposes more than hundred years but recently, the need for having high efficiency compact separators during various operating conditions has attracted the interest of researchers to them. Dewatering hydrocyclones to refine crude oil [1] and deoiling hydrocyclones to refine oily waste water in offshore platforms [2,3] are examples of liquid-liquid hydrocyclones. Separation process in hydrocyclones is based on swirl flow induces a centrifugal force and leads to separation because of density difference. The density difference in liquid-liquid mixtures is smaller than solid-liquid types and trying to separate one liquid from another takes much more effort than while separating solid from liquid. Another difference in deoiling hydrocyclones is that centrifugal force makes solid particles migrate to the wall region in desander hydrocyclones while making oil droplets move to the center in the deoiling types. So the near wall region is of high importance in desander hydrocyclones. In the meantime, attention is drawn to the center flow features in the deoiling types.

The first idea of using common hydrocyclones for oil-water separation was suggested by Simkin and Olney [4] and Sheng, Welker and Sliepcevich [5] but fundamental studies on deoiling hydrocyclones were started from 1980 by Colman and Thew.

Several experimental researches on deoiling hydrocyclones were conducted by Colman [6], Colman, Thew and Corney [7] and Colman and Thew [8]-[9]. Having a optimize geometry is one of researchers interest. Delagadillo and Rajamani [10] simulated a 75 mm cyclone and compare three different turbulence models (k-ε, RSM, LES). LES captured the characteristics of the dynamics of the flow which allow the accurate prediction of the flow field and VOF model was used for air core prediction. Delagadillo and Rajamani [11,12] used LES to optimize hydrocyclone geometry. They used Fluent software and did modifications in geometry to improve classification and efficiency. Also, they did a study [13] to show the capability of LES for large hydrocyclones and good results were reported. Saidi et al. [14] demonstrated the capability of LES to predict flow field of deoiling types hydrocyclones. They compared different turbulence models and showed that LES leads to better results than k-ε and Reynolds Stress Model. Noroozi and Hashemabadi [15,16] investigated the effect of various inlet types and inlet chamber body profiles on the separation efficiency of deoiling hydrocyclones by using Reynolds Stress Model. Water phase has a significant role on separation efficiency because of low concentration of dispersed phase. Hydrocyclone flow is a complex swirling flow and regarding influence of flow field on separation process, exact pressure and velocity field is essential for numerical simulation. Selection of appropriate turbulence model and boundary conditions is the key of a successful simulation. It should be noted that numerical errors can decay results completely. Large eddy simulation is a powerful tool to simulate hydrocyclone. It is for the first time LES used for deoiling types of hydrocyclone. In this study the focus is on flow behavior in deoiling hydrocyclones with different cone angles.

II. GOVERNING EQUATIONS

The continuity and momentum equation are the equations that are solved in this research. A general low-pass filter is applied to the Navier-Stokes equations to decompose the velocity into resolved and residual components. The large scales affected by flow geometry specify the properties of turbulent flow such as heat and mass transfer and therefore should be resolved. The small scales only dissipate the energy and could be modeled using appropriate subgrid turbulence model.

The decomposed velocity (resolved and residual) components can be written as:

$$\mathbf{u}_i = \overline{\mathbf{u}}_i + \mathbf{u}'_i$$ \hspace{1cm} (1)

Applying the decomposed velocity into mass and momentum equations and performing the filtration process, results the following equations:
\[
\frac{\partial \tau_{ij}}{\partial x_i} = 0
\]

\[
\frac{\partial \tau_{ij}}{\partial t} + \frac{\partial (\bar{u}_i \bar{u}_j)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}^{\text{res}}}{\partial x_j}
\]

where \(\tau_{ij}^{\text{res}} \) is residual stress tensor describes the unresolved scales and can be written as:

\[
\tau_{ij}^{\text{res}} = \bar{u}_i \bar{u}_j - \bar{u}_i \bar{u}_j
\]

Using Eq. (1), the residual stress tensor could be written as:

\[
\tau_{ij}^{\text{res}} = \frac{\partial \tau_{ij}}{\partial x_j} + \frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} - \frac{\partial \tau_{ij}^{\text{res}}}{\partial x_j}
\]

Eq. (5) is another representation of residual stress tensor used in dynamic Smagorinsky model. One of the most typical methods to model residual stress tensor is using eddy viscosity approach defined as below:

\[
\tau_{ij}^{\text{res}} = \frac{\partial \bar{u}_i}{\partial x_j} - 2\nu_T \bar{S}_{ij}
\]

where \(\bar{S}_{ij} \) is the strain tensor defined by Eq. (7).

\[
\bar{S}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right)
\]

Smagorinsky [17] used following expression to calculate the turbulent kinematic viscosity:

\[
\nu_T = (C_s \Delta)^2 \left| \bar{S} \right|
\]

where \(\left| \bar{S} \right| = \sqrt{2 \bar{S}_{ij} \bar{S}_{ij}} \) and \(\Delta \) is filter width. Smagorinsky constant \(C_s \) is found to vary in the range of 0.065 [18] to 0.25 [19] depends on flow and geometry. Assuming a constant value for \(C_s \) is one of the weaknesses of Smagorinsky subgrid model and we used the dynamic Smagorinsky model. Germano et al. [20] and Lilly [21] proposed a dynamic SGS model in which \(C_s \) is calculated and is not an arbitrary chosen value. The main idea behind dynamic Smagorinsky model consists in introducing a test filter (\(\Delta \)) with larger width than the original one. This filter is applied to the filtered Navier-Stokes equation. The \(C_s \) would be:

\[
C_s = -\frac{1}{2} \frac{\left< L_{ij} M_{ij} \right>}{\left< M_{ij} M_{ij} \right>}
\]

where \(L_{ij} = \bar{u}_i \bar{u}_j - \bar{u}_i \bar{u}_j \) and \(M_{ij} = [\Delta^2 \left| \bar{S} \right| \bar{S}_{ij} - \Delta^2 \left| \bar{S} \right| \bar{S}_{ij}] \).

III. GEOMETRY, GRID AND FLOW CONDITION

Simulations are performed on hydrocyclones with 35 mm of diameter and two symmetrical inlets (5mm*10 mm) enter tangentially from top of their cylindrical section. The hydrocyclone has two outlets, one at its top and the other at its end named overflow and underflow respectively. Overflow is continued to internal of the hydrocyclone with the length of \(L_0 \) and called vortex finder.

Three different studied designs with cone angles of 6, 10 and 20 degree are depicted in Fig. 1. Dimensions of considered hydrocyclones are shown in Fig. 2. The 6° hydrocyclone is designed for oily waste water refinement having oil concentration less than 0.3 vol. % in inlet by Bai et al. [22].

Fig. 1 hydrocyclone geometry with different cone angle, a) 20°, b)10°, c) 6°
Operation parameters are presented in Table I. Split ratio (R) is the ratio of flow exits from overflow to inlets. Figure 3 shows images of grid used in simulation. Except center cylinder with diameter of overflow and vortex finder which is meshed Quad/Pave, it is meshed with Quad/Map. Whole of hydrocyclone is meshed with hexahedral cells.

![Fig. 2 Hydrocyclone geometry dimensions](image)

Fig. 2 Hydrocyclone geometry dimensions

![Fig. 3 Generated mesh for hydrocyclone simulation](image)

Fig. 3 Generated mesh for hydrocyclone simulation

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>OPERATION PARAMETERS OF HYDROCYCLONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i (m³/h)</td>
<td>R %</td>
</tr>
<tr>
<td>1.5</td>
<td>5±1</td>
</tr>
</tbody>
</table>

IV. NUMERICAL METHOD

An open source CFD code OpenFOAM is used to solve the filtered Navier-Stokes equation. The code is developed based on finite volume solver with collocated grid. The Pressure-Implicit Split Operator (PISO) algorithm handles the linkage between the velocities and pressure (Issa [23]).

Preconditioned conjugate gradient solver for pressure and preconditioned bi-conjugate gradient solver for other parameters are used. Unbounded second order linear central differencing is used for convection and diffusion and backward scheme is used for time which has second order accuracy.

Simulation is started with k-ε turbulence model and switched to LRR (Lauder-Reece-Rodi) Reynolds Stress Transport Model. After preliminary convergence the solution is considered as an initial condition of LES model. The considered solution procedure helps the convergence sequence and decrease the computation time. The time steps were changed from 10^{-6} to $3\cdot10^{-6}$ during the convergence process. The upper limit of Courant number was kept less than 0.3.

V. RESULTS AND DISCUSSION

For verification of results a comparison between tangential velocity of present work and experimental work of Bai et al. [22] is conducted. Fig. 4 shows this comparison at $Z/D=2.29$ for 6’ hydrocyclone. The Agreement between experimental and computed numerical results is very good. The general trend of the curve can be predicted in numerical simulations but small deviation is seen for the location of maximum tangential velocity.

![Fig. 4 Tangential velocity at Z/D=2.29](image)

The radial variation of tangential velocity at two cross section of hydrocyclone include top ($Z=L_s$) and bottom ($Z=L_o$)
Radial pressure gradient generated by swirling motion of flow makes the lighter phase migrate toward the center. The greater radial pressure gradient, the higher separation efficiency is. But it should be considered because of increase of velocity in larger cone angle hydrocyclones, settling time for oil droplet decrease and it has negative effect on separation process of hydrocyclone i.e. although pressure gradient increase helps to make better separation but oil droplets have less time for separation because of higher velocity and lower height of cone section.

VI. CONCLUSION

Velocity and pressure distribution inside deoiling hydrocyclones are obtained by using Large Eddy Simulation for three different cone angles. Tangential velocity magnitude increases with cone angle. More sharpness in forced vortex section is seen in higher cone angles especially in upper positions.

The pressure gradient toward radial position is increased with cone angle and has a positive effect on separation but it should be noted that in large cone angle hydrocyclones separation time is decreased due to larger velocities and smaller cone height.
REFERENCES

