Arterial CO₂ Pressure Drives Ventilation with a Time Delay during Recovery from an Impulse-like Exercise without Metabolic Acidosis

R. Afroundeh, T. Arimitsu, R. Yamanaka, C. S. Lian, T. Yunoki, T. Yano, and K. Shirakawa

Abstract—We investigated this hypothesis that arterial CO₂ pressure (PaCO₂) drives ventilation (VE) with a time delay during recovery from short impulse-like exercise (10 s) with work load of 200 watts. VE and end tidal CO₂ pressure (PETCO₂) were measured continuously during rest, warming up, exercise and recovery periods. PaCO₂ was predicted (PaCO₂pred) from PETCO₂ and tidal volume (Vₜ). PETCO₂ and PaCO₂pred peaked at 20 s of recovery. VE increased and peaked at the end of exercise and then decreased during recovery; however, it peaked again at 30 s of recovery, which was 10 s later than the peak of PaCO₂pred. The relationship between VE and PaCO₂pred was not significant by using data of them obtained at the same time but was significant by using data of VE obtained 10 s later for data of PaCO₂pred. The results support our hypothesis that PaCO₂ drives VE with a time delay.

Keywords—Arterial CO₂ pressure, impulse-like exercise, time delay, ventilation.

I. INTRODUCTION

The chemosensory mechanism (feedback control) is an important ventilatory control mechanism in exercise that involves stimulation of peripheral chemoreceptors [1], [2]. The peripheral chemoreceptors are known to be responsive to changes in arterial pH and carbon dioxide pressure (PaCO₂) that occur throughout the respiratory cycle [3], [4], and [5]. However, PaCO₂ remains at a constant level during moderate exercise [6], [7] and is reduced during strenuous exercise [8], [9]. Likewise, PaCO₂ is known to mediate [H⁺] and H⁺ is main stimulus that mediates VE [10], [11]. Thus, arterial pH has been thought to have a greater effect than PaCO₂ on VE in an exercise condition. In order to extract only the effect of PaCO₂ on VE, we decided to study VE control during recovery from an impulse-like exercise with a short duration that induces no metabolic acidosis.

The transition from a chemoreceptor stimulus to alveolar VE occurs via a pathway that includes chemoreceptors that sense the signal, the central nervous system that processes it, and the respiratory muscles that translate it into alveolar ventilation [10]. Based on this model, we hypothesized that VE responds with a time delay to the stimulation of chemoreceptors by PaCO₂, and the objective of this study was therefore to investigate this hypothesis during recovery from an impulse-like exercise with a duration of 10 s and work load of 200 watts.

II. METHODS

A. Subjects

Eight healthy males participated in this study. The subjects’ mean age, height and body weight were 21.3 ± 1.5 (SD) yr, 172.9 ± 6.2 cm and 67.9 ± 9.7 kg, respectively. Each subject signed a statement of informed consent following a full explanation regarding the nature of the experiment. The Ethics Committee of Hokkaido University Graduate School of Education approved the present study.

B. Experimental Protocol

Each subject performed a pre-test and a main test consisting of one impulse-like exercise by a bicycle ergometer (Ergometer 232 CXL, Combi, Tokyo, Japan). After resting for 1 min on the bicycle seat, subjects performed 5-min warming up with 25 watts work load, 10-s impulse-like exercise with 200 watts work load and 15-min recovery with 25 watts work load at 80 rpm.

C. Measurements and Determinations

Blood was sampled from fingertips at rest and after 1 min and 5 min during the recovery period in the pre-test to be checked for lactate concentration (La) by using a Blood Lactate Test Meter. Each subject’s hand was pre-warmed in 40-45°C water prior to each test in order to arterialize capillary blood [12].

Data on respiration gas exchange were obtained using a respiratory gas analyzer (AE-280S, Minato Medical Science, Osaka, Japan). VE was measured by a hot-wire flow meter, and the flow meter was calibrated with a syringe of known volume (2 liters). O₂ and CO₂ concentrations were measured by a zincurium sensor and infrared absorption analyzer, respectively. The gas analyzer was calibrated by known standard gas (O₂: 15.17%, CO₂: 4.9%). Respiration gas exchange was measured continuously during rest, exercise, and recovery periods. For each 5-s interval, the averages of end tidal CO₂ pressure (PETCO₂), tidal volume (Vₜ) and VE were calculated.
Arterial carbon dioxide (PaCO$_2$) was predicted from PETCO$_2$ and V_T by using (1) [13]:

$$\text{Predicted PaCO}_2 (\text{PaCO}_2 \text{ pre}) = 5.5 + 0.90 \text{ PETCO}_2 - 0.0021 V_T.$$ \hspace{1cm} (1)

D. Statistical Analysis

Results are presented as means ± standard deviations (SD). One-way ANOVA for repeated measures was used to examine the time effect. If F ratios were significant, the Dunnet post-hoc test was used for comparison. A value of $p < 0.05$ was regarded as statistically significant.

III. RESULTS

Arterialized La$^-$ level did not change during recovery at any time point versus rest time ($p > 0.05$) in the pre-test. Mean values and SD of La$^-$ are presented in Table I.

TABLE I

| Recovery | Mean | SD
------------	------	-----		Rest	1 min	5 min
Mean	1.15	0.29		1.23	0.43	0.13
SD	0.29	0.43		0.13	0.13	0.13

Arterialized blood lactate levels were not significantly different from the rest value during recovery ($p > 0.05$).

PaCO$_2$ was predicted from PETCO$_2$ and V_T (1). Both PaCO$_2$ pre and PETCO$_2$ increased during recovery and peaked at 20 s during recovery ($46.77 \pm 1.83 \text{ mmHg}$ and $45.92 \pm 2.04 \text{ mmHg}$, respectively) and then decreased to the warming-up values ($43.17 \pm 2.27 \text{ mmHg}$ and $41.91 \pm 2.52 \text{ mmHg}$, respectively). They were significantly higher than the warming-up values from 15 s until 40 s during recovery ($p < 0.05$). The kinetics of PETCO$_2$ and PaCO$_2$ pre were the same during impulse-like exercise and during recovery from impulse-like exercise. These changes are shown in Fig. 1 (a) and (b) respectively.

As can be seen in Fig. 2, V_E showed two peaks: the first one at the end of exercise ($28.54 \pm 1.92 \text{ l.min}^{-1}$) and the second one at 30 s during recovery from impulse-like exercise ($29.94 \pm 1.82 \text{ l.min}^{-1}$), which is 10 s later than the peaks of PETCO$_2$ and PaCO$_2$ pre. V_E was significantly higher than the warming-up value ($22.17 \pm 1.95 \text{ l.min}^{-1}$) from 10 s of exercise until 90 s of recovery ($p < 0.05$).

Since there was a 10-s delay in the peak of V_E compared to the peaks of PETCO$_2$ and PaCO$_2$ pre, we examined two types of relationship between V_E and PaCO$_2$ pre: the relationship by plotting data of V_E against data of PaCO$_2$ pre at the same time and the relationship by plotting data of V_E obtained 10 sec

![Fig. 1 Changes in end tidal CO$_2$ pressure (PETCO$_2$) (a) and predicted arterial carbon dioxide (PaCO$_2$ pre) (b) during 200 watts impulse-like exercise and recovery from 200 watts impulse-like exercise. To make figures visible, data obtained at rest, in the first 4 min of warming up, and in the last few min of recovery are not shown. The vertical dashed line bar indicates exercise time. Data presented are means ± SD](image1)

![Fig. 2 Changes in ventilation (V_E) during 200 watts impulse-like exercise and recovery from 200 watts impulse-like exercise. To make the figure visible, data obtained at rest, in the first 4 min of warming up, and in the last few min of recovery are not shown. The vertical dashed line bar indicates exercise time. Data presented are means ± SD](image2)
later against data of PaCO₂ pre. There was no significant relationship between VE and PaCO₂ pre by using data of VE and PaCO₂ pre at the same time (r = 0.133) (Fig. 3 (a)), but a significant correlation coefficient was obtained by using data of VE obtained 10 s later for data of PaCO₂ pre (r = 0.936) (Fig. 3 (b)) (p<0.05).

It is known that carotid bodies respond to hypercapnia [15], and central chemoreceptors would be stimulated more by hypercapnia than by acute metabolic acidosis of arterial blood because the blood-brain barrier is relatively impermeable to H⁺ but is permeable to CO₂ [16]. Stimulation of these chemoreceptors by hypercapnia drive VE via a pathway in which the central nervous system processes the signal brought by chemoreceptors and then respiratory muscles translate it into alveolar VE [10]. Therefore, we hypothesized that it takes time for PaCO₂ pre to be sensed by chemoreceptors and drive VE. Since a 10-s delay in the peak of VE was seen compared to the peak of PaCO₂ pre, we obtained two types of relationship between them: the relationship by using data of VE for data of PaCO₂ pre at the same time and the relationship by using data of VE obtained 10 s later for data of PaCO₂ pre. The correlation coefficient for the latter (r = 0.936) was higher than the first one (r = 0.133). Therefore, the results of this study confirmed our hypothesis that VE responds with a time delay to stimulation of chemoreceptors by PaCO₂.

The results of this study showed that VE was still significantly higher than the warming-up value until 90 s of recovery, by which time PaCO₂ pre had already recovered to the warming-up value. This result suggests that factors other than humoral factors mediate VE during this period. Our result is consistent with the results of a study performed by Clement et al. [17] in which they concluded that VE remains stimulated at 30 min after the end of exercise by processes other than post-exercise metabolic acidosis and likely by central influence [17]. Although we did not measure the levels of any neural factors in this study, it is possible that some of the neural factors that have been proposed in previous reports are involved in this elevated response of VE. For example, thin fiber afferents (i.e., groups III and IV) in working muscles, which are thought to respond to mechanical and metabolic stimuli [18], [19] and also to respond to mechanical distension of the peripheral vascular network and change in volume of blood in the venular system [20], have been reported to be involved in the VE response during recovery from exercise [21]. Haouzi et al. [22], who investigated the effect of body position on VE response following an impulse exercise, speculated that the higher VE response in the upright (U) position than in the supine (S) position could be partly related to higher stimulation of thin muscle afferent fibers in the U position than in the S position, since the load imposed on venous return was much higher in the U position than in the S position [22]. Therefore, the possibility that thin fiber afferents are involved in the VE response during recovery from impulse-like exercise exists and needs to be proved experimentally in future studies.
REFERENCES

