Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

Muhammad Afzal, Cao Yihua, Zhao Ming

Abstract—The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944). The performance of turbulence models SA, K\(\varepsilon\), K\(\omega\) Std, and K\(\omega\) SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3\(\times\)10\(^6\), 6\(\times\)10\(^6\), and 10.5\(\times\)10\(^6\) on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than K\(\varepsilon\) and K\(\omega\) standard in under study problem.

Keywords—Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model

I. INTRODUCTION

Icing on aircraft during flight has been remain hazardous. It destroys the smooth flow of air, increasing drag while decreasing the ability of the airfoil to create lift. To maintain altitude and counter the effects of drag during flight in icing conditions, the angle of attack (AOA) is generally increased and more power is applied to the engine(s). On December 27, 1968 first jet air transport accident linked to airframe icing occurred.[1] Therefore it became more important to study the icing effect on aircraft. The effect of ice accumulated on aircraft can be study through flight tests, wind tunnel measurements and computational fluid dynamics (CFD) simulations. First two methods are comparatively expensive than 3rd one i.e. CFD. Computational Fluid Dynamics has grown from an art and mathematical curiosity to become an essential tool in almost every branch of fluid dynamics and aerodynamics.

Generation of high quality structured grids for iced airfoils is a great challenge. Chi, et al[2] presented single and multi-block structured grid for much complicated iced shapes airfoils. It was observed that multi block grid take much time to converge.
The viscosity of a fluid relates to the transport of momentum in the direction of velocity gradient. The coefficient of the dynamic viscosity is a function of temperature and pressure. For a perfect gas, $\mu$ strongly dependent on temperature but weakly dependent on pressure. [8] Sutherland formula (in SI units)

$$\mu = \frac{1.4 ST^{1/2}}{T + 110} \cdot 10^{-6}$$

The temperature $T$ is in degree Kelvin (K), at $T=288$ K, $\mu=1.78x10^{-5}$ kg/ms

Structure and unstructured types meshes in NS equation based codes are used normally. Here structure grids are generated on clean and iced shape GLC305 airfoil because it saves the time of simulation. A control volume based technique consists of integrating the governing equations about each control volume, yielding discrete equations that conserve each quantity. The flow property values are stored at the cell centre. The face value, which is needed for the element flux integration, is derived from the cell centre value. A second-order upwind scheme was applied in the computation for clean airfoil flows, while both first-order and second-order solvers were used for the iced airfoil cases. When the first-order upwind scheme is employed, this value is simply taken from its upwind cell. For 2nd order upwind scheme,

$$\phi_f = \phi + \nabla \cdot \Delta S$$

The gradient of function in discrete form is

$$\nabla \phi = \frac{1}{A} \int_{\Omega} \nabla \phi \cdot dS = \frac{1}{A} \int_{\Omega} \phi \cdot dL = \frac{1}{A} \sum_{f} \phi_f \cdot L$$

V. TURBULENCE MODELS

Navier-Stokes equation in differential form

$$\frac{\partial}{\partial t} \int_{\Omega} \rho E \, d\Omega + \int_{\Omega} \rho \left( v \cdot \nabla \right) n dS + \frac{1}{\Omega} \int_{\Omega} \left( \tau \cdot n \right) dS + \int_{\Omega} \left( \mathbf{Q} \cdot n \right) dS$$

In aerodynamics, working fluid behaves like a calorically perfect gas whose equation of state assumes the form [6], [7]

$$p = \rho RT$$

$$R = c_p - c_r, \gamma = \frac{c_p}{c_r} , h = c_p T$$

$$p = (\gamma - 1) \rho \left[ E - \frac{u^2 + v^2 + w^2}{2} \right]$$

For incompressible flow, with $v = \mu/\rho$, is being the kinematic viscosity.
Turbulence model Spalart-Allmaras one-equation model [9] employs transport equation for an eddy-viscosity variable $\nu$. It was developed, based on empiricism, dimensional analysis and Galilean invariance and selected dependence on the molecular viscosity. The transport equation is expressed as

$$\frac{d\nu}{dt} = 1 \left[ \nabla \cdot \left( \nu \nabla \nu \right) + C_{\nu s}(\nabla \nu)^2 \right]$$

$$+ C_{\nu s}(1 - f_{\nu}) \frac{\nabla \nu}{\nu} - \left[ C_{\nu t} f_{\nu} - C_{\nu t} \nu \right] \frac{\nabla \nu}{\nu} - \frac{f_{\nu} (\nu)}{\nu}$$

(13)

Where the eddy viscosity is given by

$$\nu = \frac{\nu}{f_{\nu}}$$

The turbulent eddy viscosity is obtained from $\mu_T = f_{\nu} \rho \nu$

the production term is evaluated with

$$\nu = f_{\nu} S + \frac{\nu}{\kappa} d^2 f_{z}$$

$$f_{z} = \left( 1 + \frac{\nu}{\nu} \right)^{\nu}$$

$$f_{z} = \left( \frac{1 + \nu}{\nu} \right) \frac{\max(x, 0.001)}{\nu}$$

And S stands for the magnitude of the mean rotation rate, i.e

$$S = \sqrt{2 \Omega^2}$$

(16)

Where $\Omega_j$ modification was suggested by Spalart

$$\Omega_j = \frac{1}{2} \frac{\partial u_j}{\partial x_i} - \frac{\partial u_i}{\partial x_j}$$

(17)

From above equations various constants are defined

$$C_{\nu s} = 0.1355, \quad C_{\nu t} = 0.622, \quad C_{\nu t} = 7.1, \quad C_{\nu t} = 5, \quad \sigma = 2/3, \quad \kappa = 4.11, \quad C_{\nu t} = C_{\nu t} \kappa + (1 + C_{\nu t}) \sigma, \quad C_{\nu t} = 0.3, \quad C_{\nu t} = 2, \quad C_{\nu t} = 1, \quad C_{\nu t} = 2, \quad C_{\nu t} = 1.3, \quad C_{\nu t} = 0.5$$

The SA model in integral form after the transformation into finite-volume operator is

$$\frac{\partial}{\partial t} \int_{\Omega} \nabla \Omega \int_{\Omega} (F_{\nu} - F_{\nu}) \nabla \Omega \right) \int_{\Omega} d\Omega$$

(18)

Ko turbulence model includes two equations one for the turbulent kinetic energy $k$, and a second for the specific turbulent dissipation rate $\omega$. A combination of physical processes unsteadiness, convection, diffusion, dissipation and production observed in fluid can be represent as

$$\frac{\partial}{\partial \Omega} \int_{\Omega} \nabla \Omega \int_{\Omega} (F_{\nu} - F_{\nu}) \nabla \Omega \right) \int_{\Omega} d\Omega$$

(19)

The k-o Shear Stress Transport (SST) turbulence model of Menter merges the k-\omega model of Wilcox with a high Reynolds number k-\omega model. SST model gives the combined positive features of both models. [10] The k-\omega model is employed in the wake region of the boundary layer because the k-\omega model is strongly sensitive to the free stream value of $\omega$. The transport equations for the turbulent kinetic energy and specific dissipation of turbulence in differential form

$$\frac{\partial}{\partial \Omega} \int_{\Omega} \nabla \Omega \int_{\Omega} (F_{\nu} - F_{\nu}) \nabla \Omega \right) \int_{\Omega} d\Omega$$

(20)

$$\frac{\partial}{\partial \Omega} \int_{\Omega} \nabla \Omega \int_{\Omega} (F_{\nu} - F_{\nu}) \nabla \Omega \right) \int_{\Omega} d\Omega$$

(21)

The coefficients of the inner model (k-o) are given

$\sigma_{k1} = 0.85, \quad \sigma_{\omega} = 0.5, \quad \beta_{1} = 0.075$

$C_{w1} = 0.1355, \quad C_{w2} = 0.622, \quad C_{b1} = 0.85, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$

$C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622, \quad C_{b2} = 0.622$
For normal direction sensitivity, there are no significant differences between the prediction with 100 and 200 points. However, 50 grid points were found to be too coarse to describe the flow gradients and boundary layer properties, especially at higher angles of attack.

“Fig.5” shows the lift, drag, and pitching moment coefficients which were evaluated for clean GLC305, when grid variation takes place along parallel to the surface of airfoil. At low angle of attack, computational values agree with experimental values.

B. Turbulence Model Sensitivity for Clean GLC305 Airfoil

Navier-Stoke equation based solver has options for the turbulence model selection, including algebraic, one-equation, and two-equation models. Two turbulence models SA and $k-\omega$ SST were selected to evaluate aerodynamic coefficients on clean GLC305 at $M=0.12$, and $Re=10.5\times10^6$.

“Fig.6” shows that both turbulence models are well agreed at
low angle of attack with experimental results. After stall angle, SA provides the data more close to experimental as compare to SST model.

![Graph of Lift vs Angle of Attack](image1)

**a) Lift**

![Graph of Drag vs Angle of Attack](image2)

**b) Drag**

![Graph of Pitching Moment vs Angle of Attack](image3)

**c) Pitching Moment**

**Fig.6 Turbulence Models Variation- CL, CD & Cm on clean GLC305 airfoil**

C. Turbulence Model Sensitivity for Glaze iced shape 944 on GLC305 airfoil

Four turbulence models SA, $K_ε$, $Kω$ Std and $Kω$ SST models are used to evaluate the aerodynamic characteristics for glaze ice shape 944 on GLC305.

"Fig.7" represents, SA, $K_ε$ and $Kω$ SST models give the data close to each other and also good agree with experimental lift and drag coefficients values but $Kω$ Std shows much differ. While for moment coefficient, all turbulence models are showing mixed trend.

![Graph of Lift vs Angle of Attack](image4)

**a) Lift**

![Graph of Drag vs Angle of Attack](image5)

**b) Drag**

![Graph of Pitching Moment vs Angle of Attack](image6)

**c) Pitching Moment**

**Fig.7 Turbulence Models Variation on glaze 944 ice shape GLC305 airfoil**

D. Effect of Mach at Fixed Reynolds Number

Aerodynamic characteristics at different Mach number 0.12, 0.21, and 0.28 on both clean and iced GLC305 airfoils were examined. 16.7 minute 212 rime ice shape is used. Numerical simulations were performed at the fixed Reynolds number at $3 \times 10^6$. SA turbulence model was used in evaluation.

$$Re = \frac{\rho v \ell}{\mu}$$

where $\rho$, $v$, $\ell$ and $\mu$ are density, velocity, reference length and dynamic viscosity respectively. At a fixed
Reynolds number but different velocity, density of medium changes as $p = \frac{\mu Re}{v}$ then $P = \rho RT$ also varies.

This study explained the compressibility behavior of airfoil aerodynamics.

“Fig.8-9” show the effect of different Mach number airflow on clean GLC305 and 212 rime iced GLC305 airfoils. Variation in aerodynamic coefficients is although small below stall angle, but its more significant after stall angle. It is also observed that at 0° up to 10° angle of attack, lift and drag coefficients have almost the same values but after 10° its behavior sudden change.
E. Effect of Reynolds number at Fixed Mach number

For the effect of three different Reynolds numbers 3x10^6, 6x10^6 and 10.5x10^6 at the fixed Mach number 0.12 on clean and iced GLC305 airfoils with the same configuration was examined. 16.7 minute 212 rime ice shape and SA turbulence model was used in evaluation.

“Fig.10-11” indicate that aerodynamic characteristics for clean as well as iced airfoil are almost the same at different Reynolds number but fixed Mach number.

For clean GLC305 airfoil, lift, drag and pitching moment coefficients values are much near to ref values. In iced airfoil case, pitching moment coefficient much differs from experimental values. This behavior is due to viscosity of fluid and also need much fine grid near the wall of iced airfoil.

F. Pressure distribution on iced GLC305 airfoil

The effect of turbulence models were also analyzed by considering pressure distribution on glaze ice 944 airfoil. “Fig.
12-14” show the pressure distribution at $\alpha=5^\circ$, $M=0.12$ by using SA, $K_\varepsilon$, and $K_\omega$ SST turbulence models.

VII. CONCLUSION

In this study more than hundred cases were simulated on clean and iced GLC305 airfoil. It was observed that turbulence models SA is more effective than SST, $K_\varepsilon$, and $K_\omega$ standard models in calculating flow fields around clean and iced airfoil GLC305 and also represent the closest solution of experimental data.

When Reynolds number is fixed and Mach numbers varies, then values of lift coefficient and drag coefficients for rime212, glaze944 iced airfoils GLC305 are all most the same for either mach 0.12, 0.21 or 0.28. But pitching moment is slightly differ at higher AoA. When Mach number is fixed and Reynolds numbers are varies, then lift coefficient ‘CI’ is approximately the same for all Re values. Cd and Cm show some differences.

REFERENCES