Estimating Shortest Circuit Path Length Complexity

Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake

Abstract—When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuits and related computer-aided design tools that use binary decision diagrams.

Keywords—Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation

I. INTRODUCTION

BOOLEAN decision diagrams (BDDs) and its derivatives based on Boolean decomposition such as Davio, Shannon, Read-Muller, Kronecker etc., require the inputs and outputs in terms of bit level. Therefore these representations can be quite time consuming. However, representation of multi-output functions has significant application in areas such as logic simulation and testing [1]. As circuit size continues to grow, the need for efficient evaluation becomes even more significant. The continuous increase of integration level of digital circuits imposes high and growing requirements for methods and algorithms useful in VLSI CAD design verification and testing [1], [2]. This increasing complexity of modern VLSI circuitry is only manageable through advanced CAD systems that allow efficient handling of Boolean functions (BFs) [1]. One of the most important functions of CAD tools is to provide robust and efficient data structures to represent BFs as well as fast algorithms to manipulate these data structures. During the last two decades, BDDs have gained popularity as the data structures in solving most of the combinational problems which arise in synthesis and verification of digital systems.

BDD in general is direct acyclic graph representations of BFs. BDDs were proposed by Akers [2] and were further generalized by Bryant [3]. The success of BDDs has attracted many researchers in the area of design, synthesis and verification of VLSI circuits. Evaluation of the time complexity of a BF can be performed by employing its BDD [3].

Fast evaluation time is a key step in many applications such as logic simulation, testing evaluation process of logic circuits [4], [5]. As the circuit sizes continue to grow, the need for fast evaluation becomes even more significant. The evaluation time is not directly related to the number of nodes in a BDD, but it is proportional to the path length of the BDD. Therefore, minimization of the path length can improve the overall performance of the circuit implementing BFs. This will eventually increase the efficiency of the final implementation [6], [7]. Numerous research works have been done to analyze the behavior of path related objective functions [6]-[10]. Most of the proposed methods are based on either static variable ordering [11]-[14] or dynamic variable ordering techniques [15], [16]. The minimization of the APL leads to circuits with smaller depth of paths from the root to the terminal node of the BDD. The resulting circuit will be optimized for speed on one hand, and on the other hand the number of very long paths in the BDD will be reduced [17]. The minimization of average path length (APL) is of great importance in embedded systems, real time operating system applications [18], [19]. Minimization of longest path length (LPL) [6] and shortest path length (SPL) in BDDs were motivated by the synthesis of digital circuits in order to optimize their delays, which is a very important issue for pass transistor logic [20], [21].

In all these path length minimizations, we need to create the whole BDD representing the BF with the best possible variable ordering method. Building the whole BDD may lead to some complexity in the design process in terms of the time required to implement, verify and test the design. So it will be useful to have an estimation of the BDD complexity prior to make decisions on the feasibility of the design. Many research works have been published on the estimation of combinational and sequential circuits [22], [23].

Human brains carry out very complicated classification tasks, for example, image recognition. Individual neurons in the brain are not enough to conduct such complex chores; however, the highly interconnected nature of brain decomposes the overall job into sub-tasks that can be solved at individual neuron level. This observation led to creation of artificial neural networks (NNs) (Fig. 1). The NNs learn from experience or some known examples. The learning has two facets: learning the structure of the NN, and learning the connection weights. Using the backpropagation learning
Fig. 1 A multi-layer neural network with one hidden layer

method, the weights are determined quite simply. The learning process results in a set of weights that tend to minimize the errors between the NN model (NNM) and the actual examples. NNs find applications in pattern recognition, generalization, and trend prediction. Over the past few decades, the NN has been used to provide solution to difficult NP-complete optimization problems [24].

The measure of efficiency of the circuits has been addressed in relation with the area of circuit implementation, where the complexity of BFs is analyzed in terms of their implementation using different kind of circuits, from those with simple sum-of-product (SOP) to NNs. In recent times, some research work has been done on BF complexity analysis using NN learning process. [25], [26]. The main idea of this paper is to extend the work done by the same authors to demonstrate the capabilities of a NN methodology in effectively modeling the behavior of path length properties [27]-[34]. Previously this methodology addressed the LPL and APL of BDD. Here we use an NNM to predict the SPL complexity with Monte Carlo BDD simulation.

In Section II of this paper, we review the previous work done by the same authors on the estimation of path length properties. The proposed NNM for the estimation of SPL complexity is explained in the Section III. Section IV provides the ISCAS benchmark validation for the NNM. Finally, we conclude our paper with our future developments in the same area.

II. PREVIOUS WORK DONE ON PATH LENGTH COMPLEXITY ESTIMATION

We used an NN software package called Brain-Maker version 3.75 [35] to model the path length complexity behavior. Brain Maker’s feed-forward back-propagation NNs were fully connected, meaning all inputs were connected to all hidden neurons, and all hidden neurons were connected to the outputs. Our experiments involved different number of neurons in the single hidden layer. We used 90% of the data sets as the training set and the other 10% as the validation set. During training, only the training set was presented to the NNs, and not the validation set. We had acquired a total of 10,528 data sets (also called facts) by running BF simulations [27]. A total of 72 different configurations of NNM were used to collect the data on NNM learn-ability. A given NNM was considered to be sufficiently trained when it had learnt 97.5% of the training facts. For our NNMs, the raw data (using no transformation) provided APL and LPL average training accuracy of 90.8%, 89.3% and average validation accuracy of 90% and 90.5%, respectively. The Fig. 1 illustrates the comparison of APL and LPL complexity for 10 variables from simulations and NNM predictions.

III. DATA ACQUISITION AND PRE-PROCESSING FOR SHORTEST PATH LENGTH PREDICTION

For each variable count n between 1 and 14 inclusive and for each term count between 1 and 2^n-1, 100 SOP terms were randomly generated and the Colorado University Decision Diagram (CUDD) package [36] was used to determine the SPL in terms of nodes. This process was repeated until the average size of the SPL complexities (i.e. number of nodes) became 1. Then the graphs for both the complexities were plotted against the product term count for number of variables 1 to 14. The acquired data is shown in Fig. 2. Notice that the values of SPL rise sharply for smaller minterm values, which is not a NN-friendly pattern. So in order to improve the learnability of the NNs, we used logarithmic pre-processing on the minterm values; the resultant values are shown in Fig. 3.
A. NN Training Setup and Testing Accuracy

The NN-modeling software package Brain Maker has been used here to create and test the NNMs, as mentioned earlier. The configuration and training statistics for SPL is given in Table 1. It shows that our experiments involved different number of neurons in the single hidden layer.

For our NNMs, the raw data for SPL provided an average training accuracy of 89.6% and average validation accuracy of 89.5%. Fig. 4 illustrates the training and validation accuracy as a function of neuron count in the (single) hidden layer for SPL. As expected, we needed fewer training epochs as the number of neurons in the hidden layer was increased; this is indicated by the trend-line in Fig. 5. Another point worth mentioning is that each NN configuration was trained multiple times and the best training statistics for every configuration were collected to alleviate the issue of local minima. Any increase in hidden-layer neuron count beyond four had a marginal improvement in the model accuracy. The closeness of training and validation accuracies (Fig. 4) validate the performance of our NNMs.

<table>
<thead>
<tr>
<th>Neurons in single hidden layer</th>
<th>Training epochs</th>
<th>Training time (hours)</th>
<th>Training accuracy %</th>
<th>Validation accuracy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>397</td>
<td>0.04</td>
<td>91</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>263</td>
<td>0.04</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>14</td>
<td>333</td>
<td>0.04</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>341</td>
<td>0.04</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>20</td>
<td>235</td>
<td>0.03</td>
<td>95</td>
<td>94</td>
</tr>
<tr>
<td>22</td>
<td>174</td>
<td>0.02</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

B. NN Modeling Results and Analysis

We used an arbitrary set of values for number-of-variables and number of product terms and used the NNM to predict the SPL complexities in the form of nodes (complexity).

Fig. 6 and Fig. 7 illustrate the comparison for experimental results and NNM predictions of SPL complexities for 8 and 11 variables respectively. It can be inferred that the NNM result provides a very good approximation of the path related objective function complexity.

The NNM could also be used for prediction of path length properties beyond 14 variables as the NNMs are somewhat capable of extrapolation [28].
 experiments were single output SOP expressions and the expressions, because the randomly generated BFs used for the benchmarks are sets of multi-input compound Boolean validation results for simulation using CUDD package and the complete set of 426 circuits, the NNM was able to produce the variation made the correlation meaningless. But, for the using the CUDD package [36]. For some benchmarks, lack of ISCAS benchmark produced a collection of SOP expressions. For each of these expressions, the node count was computed using the CUDD package [36]. For some benchmarks, lack of variation made the correlation meaningless. But, for the complete set of 426 circuits, the NNM was able to produce the

IV. NEURAL NETWORK MODEL VALIDATION

Table 2 illustrates the ISCAS benchmark circuit [37] validation results for simulation using CUDD package and the proposed NNM for SPL complexity estimation. The ISCAS benchmarks are sets of multi-input compound Boolean expressions, because the randomly generated BFs used for the experiments were single output SOP expressions and the benchmark functions were split into multiple single-output expressions, and then expanded directly to SOP term. Each ISCAS benchmark produced a collection of SOP expressions. For each of these expressions, the node count was computed using the CUDD package [36]. For some benchmarks, lack of variation made the correlation meaningless. But, for the complete set of 426 circuits, the NNM was able to produce the match with the RMS error of 0.102 is very significant. It can be inferred from these results that the NNM is a better model on prediction of the SPL complexity if the input data range is known. Although the benchmark circuits considered had up to 94 inputs, mostly those benchmarks consisted of product terms of 1-14 variables. The circuits for all outputs were measured. It was observed that the term-variable count combinations were almost all to the left of the roll off of the graph, and thus still in region of logarithmic complexity. So, empirically the most important part of the model is the logarithmic rise, and it was this part that has been validly tested by the benchmark circuit analysis. It is obvious that importance of a full-scale match of the curves will be more difficult to justify because of the lack of sample minterms that can be extracted from the benchmarks.

V. CONCLUSIONS

In this research work, we extended the work done by the authors in relation of NNMs with the path length properties, mainly shortest path length. The NNM was obtained through the training utilizing the experimental data for Monte Carlo BDD simulation data. The ISCAS benchmark validation with RMS errors of 0.102 has shown the accuracy of the training model. It also demonstrated that the NNMs were capable of providing useful clues about the complexity of the final circuit. Once NNMs had been developed, they could be used to conduct further experiments with different types of inputs, in a fraction of time what a circuit simulator would take. Future work will be mainly concentrated on having wider range of variables to verify the full-scale match of the curves.

REFERENCES

Azam Beg (M’07) received his MS and PhD degrees in Electrical and Computer Engineering from Mississippi State University (USA) in 1994 and 2005, respectively. He joined the College of Information Technology, United Arab Emirates University (Al-Ain, UAE), as an Assistant Professor, in August 2005. Before joining the academia, he acquired experience in diverse fields of computer, electrical and control engineering. He spent nearly 8 years at Intel Corp., USA, working on the design and validation of microprocessors, and on testing of Flash memories. Before that, he had worked for 5 years as a Test Engineer for an electronic control systems company. His experience also includes team and project management. He is the author/co-author of 9 journal and 17 conference papers. His research interests are: computer architecture (modeling, simulation, and performance analysis), CMOS/nano digital systems (design, test/validation, and reliability), and applied artificial intelligence techniques.

P. W. Chandana Prasad received the BSc and MSc degrees in Computer Engineering from St Petersburg Electro Technical University, Russia in 1990 and 1992, respectively. He received his PhD degree in Computer Engineering from Multimedia University, Malaysia in 2007. He started his career as a Computer Engineer in 1992. During his last 13 years of academic career, he worked in a number of universities in Sri Lanka, Malaysia and United Arab Emirates, as a lecturer in IT/computing. Currently, he is serving at Charles Sturt University Study Centre in Sydney, Australia as Assistant Course Coordinator and Lecturer in Computing. His research interests include digital logic design, VLSI, microprocessor systems, and computer security. He is the author and co-author of more than 40 research papers in different international journals and conference proceedings, and two books entitled Digital System Fundamentals, and Computer Systems Organization and Architecture (Prentice-Hall).

S. M. N. A. Senanayake is currently with Monash University Sunway Campus where he leads the research group Intelligent, Integrated and Interactive Systems (IIS). He has been recently appointed as the chairman of IEEE Asia-Pacific Robotics & Automation Development Council – Malaysia Section. Prior to Monash, he has been working with three different universities; Chalmers University of Technology, Sweden, Johannes Kepler University of Linz, Austria and University of Peradeniya, Sri Lanka holding key academic and research positions. During his 18 years of research experience, he managed to publish over 72 publications in international conferences, journals and book chapters. He was one of the editors of three books published based on the research outcomes. He was the special session organizer for various international conferences, in particular IEEE conferences. He is one of the reviewers in IEEE publications and Elsevier publications.

He has initiated research with Sports Biomechanics Centre, National Sports Complex, in which his research team carried out special research projects of national interest. Having engaged in this area of research, Interactive Multilayer Sensorized Smart Floor has been developed under his leadership and currently in the process of patenting the device. Dr. Arosha is the leader of MoU between Monash and National Instruments. He carried out various special research projects under this MoU which are mainly targeting industrial needs. He is a member of research committee of Monash and he is the student counselor of IEEE student branch at Monash.